Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 20 Sayı: 4, 436 - 445, 30.12.2019
https://doi.org/10.18038/estubtda.513854

Öz

Kaynakça

  • [1] Armand M, Tarascon JM. Building better batteries. Nature 2008; 451(7179): 652.
  • [2] Croguennec L, Palacin MR. Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc. 2015; 137(9):3140-56.
  • [3] Prosini PP, Cento C, Carewska M, Masci A. Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ionics. 2015; 274:34-9.
  • [4] Kino K, Yonemura M, Ishikawa Y, Kamiyama T. Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery. Solid State Ionics. 2016; 288:257-61.
  • [5] Johannes MD, Swider-Lyons K, Love CT. Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ionics. 2016 Mar 31;286:83-9.
  • [6] Li H, Wang Z, Chen L, Huang X. Research on advanced materials for Li‐ion batteries. Adv Mater. 2009; 21(45):4593-607.
  • [7] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chinese Phys B. 2015; 25(1):018212.
  • [8] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci. 2011; 4(9):3243-62.
  • [9] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009 Jul 1;47(8):2049-53.
  • [10] Fan X, Zheng WT, Kuo JL, Singh DJ. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl Mater Inter. 2013; 5(16): 7793-7.
  • [11] Zhao S, Kang W, Xue J. The potential application of phosphorene as an anode material in Li-ion batteries. J Mater Chem A. 2014; 2(44): 19046-52.
  • [12] Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy. 2016; 23:97-104.
  • [13] Zhang Y, Wu ZF, Gao PF, Zhang SL, Wen YH. Could Borophene be used as a promising anode material for high-performance lithium ion battery?. ACS Appl Mater Inter. 2016; 8(34): 22175-81.
  • [14] Mortazavi B, Dianat A, Cuniberti G, Rabczuk T. Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochim Acta. 2016; 213:865-70.
  • [15] Sengupta A, Frauenheim T. Lithium and sodium adsorption properties of monolayer antimonene. Mater Today Energy. 2017; 5:347-54.
  • [16] Zhang X, Liu Z, Hark S. Synthesis and optical characterization of single-crystalline AlN nanosheets. Solid State Commun. 2007; 143(6-7):317-20.
  • [17] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C. Boron nitride nanotubes and nanosheets. ACS Nano. 2010; 4(6):2979-93.
  • [18] Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias EG, Giamini SA, Grazianetti C, Chiappe D, Molle A, Fanciulli M, Dimoulas A. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Appl Phys Lett. 2013; 103(25): 251605.
  • [19] Samadizadeh M, Rastegar SF, Peyghan AA. F−, Cl−, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Physica E. 2015; 69:75-80.
  • [20] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D. “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010; 10(12): 5049-55.
  • [21] Ma D, Lu Z, Ju W, Tang Y. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties. J Phys-Condens Mat. 2012; 24(14): 145501.
  • [22] Zhou YG, Xiao-Dong J, Wang ZG, Xiao HY, Gao F, Zu XT. Electronic and magnetic properties of metal-doped BN sheet: A first-principles study. Phys Chem Chem Phys. 2010; 12(27): 7588-92.
  • [23] Zhou YG, Zu XT, Yang P, Xiao HY, Gao F. Oxygen-induced magnetic properties and metallic behavior of a BN sheet. J Phys-Condens Mat. 2010; 22(46): 465303.
  • [24] Li J, Hu ML, Yu Z, Zhong JX, Sun LZ. Structural, electronic and magnetic properties of single transition-metal adsorbed BN sheet: A density functional study. Chem Phys Lett. 2012; 532:40-6.
  • [25] Anaraki-Ardakani H. A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A. 2017; 381(11):1041-6.
  • [26] Hwang Y, Chung YC. Lithium adsorption on hexagonal boron nitride nanosheet using dispersion-corrected density functional theory calculations. Jpn J Appl Phys. 2013; 52(6S): 06GG08.
  • [27] Sengupta A. Lithium and sodium adsorption properties of two-dimensional aluminum nitride. Appl Surf Sci. 2018; 451:141-7.
  • [28] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Mat. 2009; 21(39): 395502.
  • [29] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865.
  • [30] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758.
  • [31] Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006; 27(15): 1787-99.
  • [32] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976; 13(12): 5188.
  • [33] Head JD, Zerner MC. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem Phys Lett. 1985; 122(3): 264-70.
  • [34] Davidson ER. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J Comput Phys. 1975; 17:87-94.
  • [35] Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-4.
  • [36] Zhang CW. First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys. 2012; 111(4):043702.
  • [37] Rastegar SF, Peyghan AA, Ghenaatian HR, Hadipour NL. NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl Surf Sci. 2013; 274:217-20.
  • [38] Ahmadi Peyghan A, Soleymanabadi H, Bagheri Z. Hydrogen release from NH3 in the presence of BN graphene: DFT studies. J Mex Chem Soc. 2015; 59(1): 67-73.
  • [39] Hosseinian A, Khosroshahi ES, Nejati K, Edjlali E, Vessally E. A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. J Mol Model. 2017; 23(12): 354.
  • [40] Kecik D, Onen A, Konuk M, Gürbüz E, Ersan F, Cahangirov S, Aktürk E, Durgun E, Ciraci S. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis. Appl Phys Rev. 2018; 5(1): 011105.
  • [41] Wilkinson G, Stone FG, Abel EW. Comprehensive organometallic chemistry. Pergamon Press; 1982.
  • [42] Huheey JE, Keiter EA, Keiter RL, Medhi OK. Inorganic chemistry: principles of structure and reactivity. Pearson Education India; 2006.
  • [43] Ersan F, Gökoğlu G, Aktürk E. Bimetallic two-dimensional PtAg coverage on h-BN substrate: First-principles calculations. Appl Surf Sci. 2014; 303: 306-11.
  • [44] Ersan F. Platinum Adsorption and Diffusion on Two-Dimensional Gallium Nitride. Süleyman Demirel University J Natural and Appl Sci 2018; 22 (2): 393-396.
  • [45] Tritsaris GA, Kaxiras E, Meng S, Wang E. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013; 13(5):2258-63.
  • [46] Lin X, Ni J. Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys Rev B. 2012; 86(7):075440.
  • [47] Osborn TH, Farajian AA. Stability of lithiated silicene from first principles. J Phys Chem C. 2012;116(43):22916-20.
  • [48] Chen HJ, Huang J, Lei XL, Wu MS, Liu G, Ouyang CY, Xu B. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration. Int J Electrochem Sci. 2013;8(2):2196-203.
  • [49] Stephenson T, Li Z, Olsen B, Mitlin D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ Environ Sci. 2014;7(1):209-31.
  • [50] Ersan F, Ozaydin HD, Gökoğlu G, Aktürk E. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M= Mo, W; X= O, S, Se, Te) monolayers. Appl Surf Sci. 2017;425:301-6.
  • [51] Zhou LJ, Hou ZF, Wu LM. First-principles study of lithium adsorption and diffusion on graphene with point defects. J Phys Chem C. 2012; 116(41):21780-7.
  • [52] Van der Ven A, Ceder G. First principles calculation of the interdiffusion coefficient in binary alloys. Phys Rev Lett. 2005; 94(4):045901.
  • [53] Wang H, Wang X, Wang L, Wang J, Jiang D, Li G, Zhang Y, Zhong H, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J Phys Chem C. 2015; 119(19): 10197-205.
  • [54] Yu P, Popov BN, Ritter JA, White RE. Determination of the lithium ion diffusion coefficient in graphite. J Electrochem Soc. 1999; 146(1):8-14.

A FIRST-PRINCIPLES INVESTIGATION OF LITHIUM ADSORPTION AND DIFFUSION ON BN, AlN AND GaN MONOLAYERS

Yıl 2019, Cilt: 20 Sayı: 4, 436 - 445, 30.12.2019
https://doi.org/10.18038/estubtda.513854

Öz

We investigated the adsorption and diffusion of lithium atom on graphene like h-BN, h-AlN and h-GaN monolayers for potential applications as an anode for lithium ion batteries using first principles calculations. To find an energetically favorable site, three possible adsorption sites are considered to place the single Li atom on substrates. Our results revealed that lithium atom prefers the hollow site of the monolayer structures rather than the top of B, Al, Ga or N atom. We also obtained the diffusion energy barrier of adsorbed lithium ion through a pathway from one hollow position to another as 0.117, 0.452, and 0.610 eV for h-BN, h-AlN and h-GaN structures, respectively.

Kaynakça

  • [1] Armand M, Tarascon JM. Building better batteries. Nature 2008; 451(7179): 652.
  • [2] Croguennec L, Palacin MR. Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc. 2015; 137(9):3140-56.
  • [3] Prosini PP, Cento C, Carewska M, Masci A. Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ionics. 2015; 274:34-9.
  • [4] Kino K, Yonemura M, Ishikawa Y, Kamiyama T. Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery. Solid State Ionics. 2016; 288:257-61.
  • [5] Johannes MD, Swider-Lyons K, Love CT. Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ionics. 2016 Mar 31;286:83-9.
  • [6] Li H, Wang Z, Chen L, Huang X. Research on advanced materials for Li‐ion batteries. Adv Mater. 2009; 21(45):4593-607.
  • [7] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chinese Phys B. 2015; 25(1):018212.
  • [8] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci. 2011; 4(9):3243-62.
  • [9] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009 Jul 1;47(8):2049-53.
  • [10] Fan X, Zheng WT, Kuo JL, Singh DJ. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl Mater Inter. 2013; 5(16): 7793-7.
  • [11] Zhao S, Kang W, Xue J. The potential application of phosphorene as an anode material in Li-ion batteries. J Mater Chem A. 2014; 2(44): 19046-52.
  • [12] Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy. 2016; 23:97-104.
  • [13] Zhang Y, Wu ZF, Gao PF, Zhang SL, Wen YH. Could Borophene be used as a promising anode material for high-performance lithium ion battery?. ACS Appl Mater Inter. 2016; 8(34): 22175-81.
  • [14] Mortazavi B, Dianat A, Cuniberti G, Rabczuk T. Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochim Acta. 2016; 213:865-70.
  • [15] Sengupta A, Frauenheim T. Lithium and sodium adsorption properties of monolayer antimonene. Mater Today Energy. 2017; 5:347-54.
  • [16] Zhang X, Liu Z, Hark S. Synthesis and optical characterization of single-crystalline AlN nanosheets. Solid State Commun. 2007; 143(6-7):317-20.
  • [17] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C. Boron nitride nanotubes and nanosheets. ACS Nano. 2010; 4(6):2979-93.
  • [18] Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias EG, Giamini SA, Grazianetti C, Chiappe D, Molle A, Fanciulli M, Dimoulas A. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Appl Phys Lett. 2013; 103(25): 251605.
  • [19] Samadizadeh M, Rastegar SF, Peyghan AA. F−, Cl−, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Physica E. 2015; 69:75-80.
  • [20] Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D. “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010; 10(12): 5049-55.
  • [21] Ma D, Lu Z, Ju W, Tang Y. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties. J Phys-Condens Mat. 2012; 24(14): 145501.
  • [22] Zhou YG, Xiao-Dong J, Wang ZG, Xiao HY, Gao F, Zu XT. Electronic and magnetic properties of metal-doped BN sheet: A first-principles study. Phys Chem Chem Phys. 2010; 12(27): 7588-92.
  • [23] Zhou YG, Zu XT, Yang P, Xiao HY, Gao F. Oxygen-induced magnetic properties and metallic behavior of a BN sheet. J Phys-Condens Mat. 2010; 22(46): 465303.
  • [24] Li J, Hu ML, Yu Z, Zhong JX, Sun LZ. Structural, electronic and magnetic properties of single transition-metal adsorbed BN sheet: A density functional study. Chem Phys Lett. 2012; 532:40-6.
  • [25] Anaraki-Ardakani H. A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A. 2017; 381(11):1041-6.
  • [26] Hwang Y, Chung YC. Lithium adsorption on hexagonal boron nitride nanosheet using dispersion-corrected density functional theory calculations. Jpn J Appl Phys. 2013; 52(6S): 06GG08.
  • [27] Sengupta A. Lithium and sodium adsorption properties of two-dimensional aluminum nitride. Appl Surf Sci. 2018; 451:141-7.
  • [28] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Mat. 2009; 21(39): 395502.
  • [29] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865.
  • [30] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758.
  • [31] Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem. 2006; 27(15): 1787-99.
  • [32] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976; 13(12): 5188.
  • [33] Head JD, Zerner MC. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem Phys Lett. 1985; 122(3): 264-70.
  • [34] Davidson ER. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J Comput Phys. 1975; 17:87-94.
  • [35] Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-4.
  • [36] Zhang CW. First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys. 2012; 111(4):043702.
  • [37] Rastegar SF, Peyghan AA, Ghenaatian HR, Hadipour NL. NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl Surf Sci. 2013; 274:217-20.
  • [38] Ahmadi Peyghan A, Soleymanabadi H, Bagheri Z. Hydrogen release from NH3 in the presence of BN graphene: DFT studies. J Mex Chem Soc. 2015; 59(1): 67-73.
  • [39] Hosseinian A, Khosroshahi ES, Nejati K, Edjlali E, Vessally E. A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. J Mol Model. 2017; 23(12): 354.
  • [40] Kecik D, Onen A, Konuk M, Gürbüz E, Ersan F, Cahangirov S, Aktürk E, Durgun E, Ciraci S. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis. Appl Phys Rev. 2018; 5(1): 011105.
  • [41] Wilkinson G, Stone FG, Abel EW. Comprehensive organometallic chemistry. Pergamon Press; 1982.
  • [42] Huheey JE, Keiter EA, Keiter RL, Medhi OK. Inorganic chemistry: principles of structure and reactivity. Pearson Education India; 2006.
  • [43] Ersan F, Gökoğlu G, Aktürk E. Bimetallic two-dimensional PtAg coverage on h-BN substrate: First-principles calculations. Appl Surf Sci. 2014; 303: 306-11.
  • [44] Ersan F. Platinum Adsorption and Diffusion on Two-Dimensional Gallium Nitride. Süleyman Demirel University J Natural and Appl Sci 2018; 22 (2): 393-396.
  • [45] Tritsaris GA, Kaxiras E, Meng S, Wang E. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013; 13(5):2258-63.
  • [46] Lin X, Ni J. Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys Rev B. 2012; 86(7):075440.
  • [47] Osborn TH, Farajian AA. Stability of lithiated silicene from first principles. J Phys Chem C. 2012;116(43):22916-20.
  • [48] Chen HJ, Huang J, Lei XL, Wu MS, Liu G, Ouyang CY, Xu B. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration. Int J Electrochem Sci. 2013;8(2):2196-203.
  • [49] Stephenson T, Li Z, Olsen B, Mitlin D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ Environ Sci. 2014;7(1):209-31.
  • [50] Ersan F, Ozaydin HD, Gökoğlu G, Aktürk E. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M= Mo, W; X= O, S, Se, Te) monolayers. Appl Surf Sci. 2017;425:301-6.
  • [51] Zhou LJ, Hou ZF, Wu LM. First-principles study of lithium adsorption and diffusion on graphene with point defects. J Phys Chem C. 2012; 116(41):21780-7.
  • [52] Van der Ven A, Ceder G. First principles calculation of the interdiffusion coefficient in binary alloys. Phys Rev Lett. 2005; 94(4):045901.
  • [53] Wang H, Wang X, Wang L, Wang J, Jiang D, Li G, Zhang Y, Zhong H, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J Phys Chem C. 2015; 119(19): 10197-205.
  • [54] Yu P, Popov BN, Ritter JA, White RE. Determination of the lithium ion diffusion coefficient in graphite. J Electrochem Soc. 1999; 146(1):8-14.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Sevil Sarikurt 0000-0002-5373-4732

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 4

Kaynak Göster

AMA Sarikurt S. A FIRST-PRINCIPLES INVESTIGATION OF LITHIUM ADSORPTION AND DIFFUSION ON BN, AlN AND GaN MONOLAYERS. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Aralık 2019;20(4):436-445. doi:10.18038/estubtda.513854