Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 20 Sayı: 4, 393 - 405, 30.12.2019
https://doi.org/10.18038/estubtda.666894

Öz

Kaynakça

  • [1] Mann S. Molecular recognition in biomineralization. Nature 1988; 332: 119–124.
  • [2] Mann S. Biomineralization and biomimetic materials chemistry. J Mater Chem 1955; 935-946.
  • [3] Webster TH. Nanophase ceramics: The future orthopedic and dental implant material. Adv Chem Eng 2001; 27: 125-166.
  • [4] Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005; 8: 131-136.
  • [5] Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34: 3174-3183.
  • [6] Neira IS, Kolen’ko YV, Lebedev OI, Tendeloo GV, Gupta HS, Guitian F, Yoshimura M. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst Growth Des 2008; 9: 466-474.
  • [7] Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future?. Mater Today 2016; 19: 69-87.
  • [8] Canillas M, Pena P, Aza AH, Rodríguez MA, Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio 2017; 56: 91-112.
  • [9] Koutsopoulos S, Dalas E. The effect of acidic amino acids on hydroxyapatite crystallization. J Cryst Growth 2000; 217: 410-415.
  • [10] Koutsopoulos S, Dalas E. Hydroxyapatite crystallization in the presence of serine, tyrosine and hydroxyproline amino acids with polar side groups. J Cryst Growth 2000; 216: 443-449.
  • [11] Koutsopoulos S, Dalas E. Hydroxyapatite crystallization in the presence of amino acids with uncharged polar side groups:  glycine, cysteine, cystine, and glutamine. Langmuir 2001; 17: 1074-1079.
  • [12] Oner M, Dogan O. Inhibitory effect of polyelectrolytes on crystallization kinetics of hydroxyapatite. Prog Cryst Growth Charact Mater 2005; 50: 39-51.
  • [13] Mangood A, Malkaj P, Dalas E. Hydroxyapatite crystallization in the presence acetaminophe. J Cryst Growth 2006; 290: 565-570.
  • [14] Lima TARM, Brito NS, Peixoto JA, Valerio MEG. The incorporation of chromium (III) into hydroxyapatite crystals. Mater Lett 2015; 140: 187-191.
  • [15] Bucur AI, Bucur RA, Szabadai Z, Mosoarca C. Influence of small concentration addition of tartaric acid on the 220 C hydrothermal synthesis of hydroxyapatite. Mater Charact 2017; 132: 76-82.
  • [16] Yuan C, Liu B, Liu H. Characterization of butyric acid with different substitution patterns via FTIR, GC-MS, and TG-DTA. Carbohydr Polym 2015; 118: 36-40.
  • [17] Wada Y, Kobayashi T, Matsumoto M, Onoe K. A novel crystallization technique of hydroxyapatite utilizing contact reaction of minute droplet with atmospheric plasmas: Effects of the liquid source composition on the produced crystal properties. J Cryst Growth 2017; 475: 316-321.
  • [18] Wang Z, Xu Z, Zhao W, Sahai N. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite. J Mater Chem B 2015; 3: 9157-9167.
  • [19] Polat S, Sayan P. Characteristics and Thermal Kinetics of Hydroxyapatite Crystals Doped with Tricarballylic Acid. Chem Eng Technol 2018; 41: 1108-1117.
  • [20] Chen LJ, Mccrate JM, Lee JCM, Li H. The role of surface charge on the uptake and biocompatibility of hydroaxayapatite nanoparticles with osteoblast cells. Nanotechnology 2011; 22: 693-698.
  • [21] Hendi AA. Hydroxyapatite based nanocomposite ceramics. J Alloys and Compd 2017; 712: 147-151.
  • [22] Tang B, Yuan H, Cheng L, Zhou X, Huang X, Li J, Effects of gallic acid on the morphology and growth of hydroxyapatite crystals. Arch Oral Biol 2015; 60: 167-173. [23] Liao CJ, Lin FH, Chen KS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 1999; 20: 1807-1813.
  • [24] Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram So 2004; 24: 693-698.
  • [25] Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuels 1998; 12: 864-869. [26] Ozawa T. A new method of analyzing thermogravimetric data. Bulletin Chem Soc Japan 1965; 38: 1881-1886.
  • [27] Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 1966; 70: 487-523.
  • [28] Friedman HL. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci 1964; 16: 183-195.

THE PHYSICOCHEMICAL CHARACTERIZATION AND KINETIC PARAMETER ASSESSMENT OF HYDROXYAPATITE CRYSTALS

Yıl 2019, Cilt: 20 Sayı: 4, 393 - 405, 30.12.2019
https://doi.org/10.18038/estubtda.666894

Öz

ABSTRACT

The crystallization of hydroxyapatite (HAP) was analyzed in a batch system in pure medium and in the presence of butyric acid as an additive. The experiments were conducted at different additive concentrations and the influences of the additive were investigated. Firstly, the crystals obtained were characterized by X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, zeta potential measurement, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The structure, surface areas, morphology, surface potential charges, functional groups and thermal decomposition behavior of the crystals were determined. In the next step, thermal decomposition kinetic profiles were modeled using the distributed activation energy model (DAEM), Flynn-Wall-Ozawa (FWO) and Friedman models. All the models used provided accurate fits of the TGA data with acceptably high R2 values. The value for the crystals obtained from the butyric acid containing medium was about 589 kJ/mol higher than that found for the crystals from the pure medium (538 kJ/mol). According to the results of the characterization and kinetic analysis, butyric acid could be employed as an additive for the production of HAP crystals with the desired quality and physical properties.

Kaynakça

  • [1] Mann S. Molecular recognition in biomineralization. Nature 1988; 332: 119–124.
  • [2] Mann S. Biomineralization and biomimetic materials chemistry. J Mater Chem 1955; 935-946.
  • [3] Webster TH. Nanophase ceramics: The future orthopedic and dental implant material. Adv Chem Eng 2001; 27: 125-166.
  • [4] Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005; 8: 131-136.
  • [5] Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34: 3174-3183.
  • [6] Neira IS, Kolen’ko YV, Lebedev OI, Tendeloo GV, Gupta HS, Guitian F, Yoshimura M. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst Growth Des 2008; 9: 466-474.
  • [7] Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future?. Mater Today 2016; 19: 69-87.
  • [8] Canillas M, Pena P, Aza AH, Rodríguez MA, Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio 2017; 56: 91-112.
  • [9] Koutsopoulos S, Dalas E. The effect of acidic amino acids on hydroxyapatite crystallization. J Cryst Growth 2000; 217: 410-415.
  • [10] Koutsopoulos S, Dalas E. Hydroxyapatite crystallization in the presence of serine, tyrosine and hydroxyproline amino acids with polar side groups. J Cryst Growth 2000; 216: 443-449.
  • [11] Koutsopoulos S, Dalas E. Hydroxyapatite crystallization in the presence of amino acids with uncharged polar side groups:  glycine, cysteine, cystine, and glutamine. Langmuir 2001; 17: 1074-1079.
  • [12] Oner M, Dogan O. Inhibitory effect of polyelectrolytes on crystallization kinetics of hydroxyapatite. Prog Cryst Growth Charact Mater 2005; 50: 39-51.
  • [13] Mangood A, Malkaj P, Dalas E. Hydroxyapatite crystallization in the presence acetaminophe. J Cryst Growth 2006; 290: 565-570.
  • [14] Lima TARM, Brito NS, Peixoto JA, Valerio MEG. The incorporation of chromium (III) into hydroxyapatite crystals. Mater Lett 2015; 140: 187-191.
  • [15] Bucur AI, Bucur RA, Szabadai Z, Mosoarca C. Influence of small concentration addition of tartaric acid on the 220 C hydrothermal synthesis of hydroxyapatite. Mater Charact 2017; 132: 76-82.
  • [16] Yuan C, Liu B, Liu H. Characterization of butyric acid with different substitution patterns via FTIR, GC-MS, and TG-DTA. Carbohydr Polym 2015; 118: 36-40.
  • [17] Wada Y, Kobayashi T, Matsumoto M, Onoe K. A novel crystallization technique of hydroxyapatite utilizing contact reaction of minute droplet with atmospheric plasmas: Effects of the liquid source composition on the produced crystal properties. J Cryst Growth 2017; 475: 316-321.
  • [18] Wang Z, Xu Z, Zhao W, Sahai N. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite. J Mater Chem B 2015; 3: 9157-9167.
  • [19] Polat S, Sayan P. Characteristics and Thermal Kinetics of Hydroxyapatite Crystals Doped with Tricarballylic Acid. Chem Eng Technol 2018; 41: 1108-1117.
  • [20] Chen LJ, Mccrate JM, Lee JCM, Li H. The role of surface charge on the uptake and biocompatibility of hydroaxayapatite nanoparticles with osteoblast cells. Nanotechnology 2011; 22: 693-698.
  • [21] Hendi AA. Hydroxyapatite based nanocomposite ceramics. J Alloys and Compd 2017; 712: 147-151.
  • [22] Tang B, Yuan H, Cheng L, Zhou X, Huang X, Li J, Effects of gallic acid on the morphology and growth of hydroxyapatite crystals. Arch Oral Biol 2015; 60: 167-173. [23] Liao CJ, Lin FH, Chen KS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 1999; 20: 1807-1813.
  • [24] Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram So 2004; 24: 693-698.
  • [25] Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuels 1998; 12: 864-869. [26] Ozawa T. A new method of analyzing thermogravimetric data. Bulletin Chem Soc Japan 1965; 38: 1881-1886.
  • [27] Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 1966; 70: 487-523.
  • [28] Friedman HL. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci 1964; 16: 183-195.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevgi Polat 0000-0002-0934-2125

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 4

Kaynak Göster

AMA Polat S. THE PHYSICOCHEMICAL CHARACTERIZATION AND KINETIC PARAMETER ASSESSMENT OF HYDROXYAPATITE CRYSTALS. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Aralık 2019;20(4):393-405. doi:10.18038/estubtda.666894