Araştırma Makalesi
BibTex RIS Kaynak Göster

MXENE 2D Ti3C2TX PRODUCTION AND SPIN-ORBIT EFFECT (SOI) OF Ti3C2(OH)2 IN THE ELECTRONIC STRUCTURE

Yıl 2024, Cilt: 25 Sayı: 3, 341 - 367, 30.09.2024
https://doi.org/10.18038/estubtda.1405850

Öz

Research on new-generation materials to meet the energy needs has begun to attract attention. Recetly, energy storage in materials has become the most researched area. As a result of the reaction of the MAX phase 312 Ti3SiC2 powder with hydrofluoric acid, a new 2D nanosized layered powder called MXene, similar to graphene, was obtained. MXenes, which have been studied in various sectors, especially energy, have attracted the attention of researchers owing to their multilayered structures. When Ti3SiC2 powder was treated with hydrofluoric acid (HF), an accordion-like two-dimensional Ti3C2Tx MXene structure was formed. In MXenes, surface coatings such as –O,–OH, and –F groups, which determine and affect various aspects of 2D materials, such as conductivity, constitute the application area. In this study, Ti3C2(OH)2–O and/or–OH surface terminations were examined using density functional theory (DFT) with the effect of the hydrofluoric acid etching time. Quantum Espresso program was used for DFT calculation. X-ray diffraction (XRD) and scanning electron microscopy (SEM and FESEM) were used to examine the MXene-phase Ti3C2Tx powder and first-principles calculations were performed. The structural and electronic properties of MAX and MXene compounds were determined. The spin-orbit effect (SOI) was examined in the electronic structure of MXene. The total and partial densities of states (DOS) with and without spin orbit were calculated

Kaynakça

  • [1] Su X, Zhang J, Mu H, et al. Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. Journal of Alloys and Compounds. 2018;752:32-39. doi:10.1016/j.jallcom.2018.04.152.
  • [2] Zhu H. Functional metal carbide nano structures with unique thermal and electrical chemical properties. Published online 2018.
  • [3] Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Computational Materials Science. 2012;65:104-114. doi:10.1016/j.commatsci.2012.07.011.
  • [4] Agartan L, Hantanasirisakul K, Buczek S, et al. Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination. 2020;477. doi:10.1016/j.desal.2019.114267.
  • [5] Lv G, Wang J, Shi Z, Fan L. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Materials Letters. 2018;219:45-50. doi:10.1016/j.matlet.2018.02.016.
  • [6] Salim O, Mahmoud KA, Pant KK, Joshi RK. Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry. 2019;14:100191. doi:10.1016/j.mtchem.2019.08.010.
  • [7] Eklund P, Rosen J, Persson POÅ. Layered ternary Mn+1AXn phases and their 2D derivative MXene: An overview from a thin-film perspective. Journal of Physics D: Applied Physics. 2017;50(11). doi:10.1088/1361-6463/aa57bc.
  • [8] Venkateshalu S, Grace AN. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Applied Materials Today. 2020;18:100509. doi:10.1016/j.apmt.2019.100509.
  • [9] Alhabeb M, Maleski K, Mathis TS, et al. Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition. 2018;57(19):5444-5448. doi:10.1002/anie.201802232.
  • [10] Cui G, Zheng X, Lv X, Jia Q, Xie W, Gu G. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceramics International. 2019;45(17):23600-23610. doi:10.1016/j.ceramint.2019.08.071.
  • [11] Gogotsi Y, Anasori B. The Rise of MXenes. ACS Nano. 2019;13(8):8491-8494. doi:10.1021/acsnano.9b06394.
  • [12] Zhao S, Nivetha R, Qiu Y, Guo X. Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications. Chinese Chemical Letters. 2020;31(4):947-952. doi:10.1016/j.cclet.2019.11.045.
  • [13] Rasool K, Pandey RP, Rasheed PA, Buczek S, Gogotsi Y, Mahmoud KA. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today. 2019;30(November):80-102. doi:10.1016/j.mattod.2019.05.017.
  • [14] Halim J, Cook KM, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science. 2016;362:406-417. doi:10.1016/j.apsusc.2015.11.089.
  • [15] Collini P. Deposizione Elettroforetica Di Film Di Mxene Per Applicazioni Funzionali. MaxMaterialsDrexelEdu. Published online 2017. http://max.materials.drexel.edu/wp-content/uploads/Pieralberto_Collini.pdf.
  • [16] Tang J, Yi W, Zhong X, et al. Laser writing of the restacked titanium carbide MXene for high performance supercapacitors. Energy Storage Materials. 2020;32(July):418-424. doi:10.1016/j.ensm.2020.07.028.
  • [17] Wild M, GregoryJ.Offe. Lithium-Sulfur Batteries. John Wiley & Sons Ltd; 2019.
  • [18] Shi L. From MAX phases to MXenes : synthesis, characterization and electronic properties. Published online 2017.
  • [19] Jo G. Proton Hopping in a Single Layer Water Between MXene Layers Using ReaxFF MD Simulation. 2017;(May).
  • [20] Halim J. Synthesis and Characterization of 2D Nanocrystals and Thin Films of Transition Metal Carbides (MXenes). 2014;(1679). doi:10.3384/lic.diva-111128.
  • [21] Magné D. Synthèse et structure électronique de phases MAX et MXènes. Published online 2016. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/83ffbfba-e881-4604-9aff-2875945e1f3b.
  • [22] M. Higashi, S. Momono, K. Kishida, N. L. Okamoto, and H. Inui, “Anisotropic plastic deformation of single crystals of the MAX phase compound Ti3SiC2 investigated by micropillar compression,” Acta Materialia, vol. 161, pp. 161–170, 2018, doi: 10.1016/j.actamat.2018.09.024.
  • [23] Zhu M, Wang R, Chen C, Zhang HB, Zhang GJ. Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti. Ceramics International. 2017;43(7):5708-5714. doi:10.1016/j.ceramint.2017.01.111.
  • [24] Sun ZM, Zou Y, Tada S, Hashimoto H. Effect of Al addition on pressureless reactive sintering of Ti3SiC2. Scripta Materialia. 2006;55(11):1011-1014. doi:10.1016/j.scriptamat.2006.08.019.
  • [25] Zhang J, Wang L, Jiang W, Chen L. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering. Materials Science and Engineering A. 2008;487(1-2):137-143. doi:10.1016/j.msea.2007.12.004.
  • [26] Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials. 2017;2(2). doi:10.1038/natrevmats.2016.98.
  • [27] Li J, Kurra N, Seredych M, Meng X, Wang H, Gogotsi Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy. 2019;56(November 2018):151-159. doi:10.1016/j.nanoen.2018.11.042.
  • [28] Hu T, Yang J, Wang X. Carbon vacancies in Ti2CT2 MXenes: Defects or a new opportunity? Physical Chemistry Chemical Physics. 2017;19(47):31773-31780. doi:10.1039/c7cp06593k.
  • [29] Wang Y, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters. 2020;31(4):937-946. doi:10.1016/j.cclet.2019.11.016.
  • [30] Ward J, Middleburgh S, Topping M, et al. Crystallographic evolution of MAX phases in proton irradiating environments. Journal of Nuclear Materials. 2018;502:220-227. doi:10.1016/j.jnucmat.2018.02.008.
  • [31] Jung Y Il, Park DJ, Park JH, Park JY, Kim HG, Koo YH. Effect of TiSi2/Ti3SiC2 matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties. Journal of the European Ceramic Society. 2016;36(6):1343-1348. doi:10.1016/j.jeurceramsoc.2016.01.015.
  • [32] Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C. 2017;5(10):2488-2503. doi:10.1039/c7tc00140a.
  • [33] Acerce M. Electrochemical Charge Storage and Electrochemomechanical Behavior of Chemically Exfoliated & Restacked MoS2 Nanosheets. Published online 2016.
  • [34] Abdelmalak MN. MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries. Published online 2014.
  • [35] Boota M. Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage. ECS Meeting Abstracts. 2017;(September). doi:10.1149/ma2017-01/43/2013.
  • [36] Ghidiu MJ. Ions in MXene: Characterization and Control of Interlayer Cations and their Effects on Structure and Properties of 2D Transition Metal Carbides. 2018;(June).
  • [37] Colón MG. Max-Phase Slurry Coatings For High Temperature Oxidation Protectıon of Ti Based Alloys. Published online 2014.
  • [38] Lane NJ. Lattice Dynamical Studies of Select MAX Phases. 2013;(April).
  • [39] Karlsson L. Transmission Electron Microscopy of 2D Materials: Structure and Surface Properties. 2016;(1745). doi:10.3384/diss.diva-127526.
  • [40] Zhang X, Liu Y, Dong S, Yang J, Liu X. Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. Journal of Alloys and Compounds. 2019;790:517-523. doi:10.1016/j.jallcom.2019.03.219.
  • [41] Wen Y, Rufford TE, Chen X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38(June):368-376. doi:10.1016/j.nanoen.2017.06.009.
  • [42] Lukatskaya MR. Capacitive Performance of Two-Dimensional Metal Carbides. 2015;(December). doi:10.1145/3132847.3132886.
  • [43] Ahmed B. Surface Modification of MXenes : A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices. Published online 2017.
  • [44] Rajagopalan Kannan DR, Terala PK, Moss PL, Weatherspoon MH. Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries. International Journal of Electrochemistry. 2018;2018:1-7. doi:10.1155/2018/1925708.
  • [45] Meng J, Zhang F, Zhang L, et al. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry. 2020;46:256-263. doi:10.1016/j.jechem.2019.10.008.
  • [46] Wang CH, Kurra N, Alhabeb M, Chang JK, Alshareef HN, Gogotsi Y. Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega. 2018;3(10):12489-12494. doi:10.1021/acsomega.8b02032.
  • [47] Tang H, Li W, Pan L, et al. A Robust, Freestanding MXene-Sulfur Conductive Paper for Long-Lifetime Li–S Batteries. Advanced Functional Materials. 2019;29(30):1-10. doi:10.1002/adfm.201901907.
  • [48] Jiang W, Henager CH, Varga T, et al. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2. Journal of Nuclear Materials. 2015;462:310-320. doi:10.1016/j.jnucmat.2015.04.002
  • [49] Jacques S, Fakih H, Viala JC. Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: Effect on the ternary carbide texture. Thin Solid Films. 2010;518(18):5071-5077. doi:10.1016/j.tsf.2010.02.059.
  • [50] Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal. 2019;359(November 2018):1265-1302. doi:10.1016/j.cej.2018.11.051.
  • [51] Min B. Broadly defined synthesis and properties of phase change materials. Published online 2018.
  • [52] Mashtalir O. Chemistry of Two-Dimensional Transition Metal Carbides (MXenes). Published online 2015.
  • [53] Jaffari ZH, Abuabdou SMA, Ng D-Q, Bashir MJK. Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem. 2021;28(April):100256. doi:10.1016/j.flatc.2021.100256.
  • [54] Ashton M. Computational Methods for the Discovery and Characterization of Two-Dmensional Materials. Published online 2017.
  • [55] Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011;23(37):4248-4253. doi:10.1002/adma.201102306.
  • [56] Liao Y, Qian J, Xie G, et al. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental. 2020;273(February):119054. doi:10.1016/j.apcatb.2020.119054.
  • [57] Wen Y, Li R, Liu J, et al. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. Journal of Colloid and Interface Science. 2021;604:239-247. doi:10.1016/j.jcis.2021.06.020.
  • [58] Chen Y-H, Qi M-Y, Li Y-H, et al. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Reports Physical Science. 2021;2(3):100371. doi:10.1016/j.xcrp.2021.100371.
  • [59] Zhao X, Chen J, Zhao C, et al. Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study. Applied Surface Science. 2021;570(August):151183. doi:10.1016/j.apsusc.2021.151183.
  • [60] Mondal K, Ghosh P. Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction. Solid State Communications. 2019;299(March):113657. doi:10.1016/j.ssc.2019.113657.
  • [61] Ekici MR, Atasoy A. Graphene Alternative 2D Materials: MXene. In: 20th International Metallurgy and Materials Congress. ; 2021:396-400.
  • [62] Ekici MR, Atasoy A. Effect of HF Acid on The Formation of New 2D Ti3C2 Mxene From Ti3SiC2. Selcuk University Journal of Engineering Sciences. 2020;Special Is(1):1-23. https://sujes.selcuk.edu.tr/sujes/article/view/512.
  • [63] Ekici MR, Tabar E, Atasoy A, Bulut E, Hoşgör G. Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti3C2Tx electrodes. Canadian Metallurgical Quarterly. Published online September 16, 2022:1-22. doi:10.1080/00084433.2022.2124108.
  • [64] Chae A, Jang H, Koh DY, Yang CM, Kim YK. Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes. Talanta. 2020;209(November 2019):120531. doi:10.1016/j.talanta.2019.120531.
  • [65] Ren C (Evelyn). Interaction of Ions with Two-Dimensional Transition Metal Carbide (MXene) Films. ProQuest Dissertations and Theses. 2017;(July).
  • [66] Dall’Agnese Y. Study of Early Transition Metal Carbides for Energy Storage Applications. 2016;(March).
  • [67] Steinberg J a. Formation of Thin Films from MXene Flakes. Published online 2013.
  • [68] Zhang C (John), Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials. 2019;16(May 2018):102-125. doi:10.1016/j.ensm.2018.05.003.
  • [69] Shah JB. Synthesis of MXene-Epoxy Nanocomposites. 2017;(June).
  • [70] Hatter CB, Shah J, Anasori B, Gogotsi Y. Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part B: Engineering. 2020;182(June 2019):107603. doi:10.1016/j.compositesb.2019.107603.
  • [71] Rosenkranz A, Grützmacher PG, Espinoza R, et al. Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants - Role of surface terminations and intercalated water. Applied Surface Science. 2019;494(July):13-21. doi:10.1016/j.apsusc.2019.07.171.
  • [72] Zhang S. Study of chemical reactivity of MAX phase single crystals. Published online 2018.
  • [73] Aghamohammadi H, Heidarpour A, Jamshidi R. The phase and morphological evolution of Ti3SiC2 MAX phase powder after HF treatment. Ceramics International. 2018;44(15):17992-18000. doi:10.1016/j.ceramint.2018.06.278.
  • [74] Piechowiak MA, Henon J, Durand-Panteix O, et al. Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. Journal of the European Ceramic Society. 2014;34(5):1063-1072. doi:10.1016/j.jeurceramsoc.2013.11.019.
  • [75] Schultheiß J, Dermeik B, Filbert-Demut I, et al. Processing and characterization of paper-derived Ti3SiC2 based ceramic. Ceramics International. 2015;41(10):12595-12603. doi:10.1016/j.ceramint.2015.06.085.
  • [76] Guo J, Zhao Y, Liu A, Ma T. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta. 2019;305:164-174. doi:10.1016/j.electacta.2019.03.025.
  • [77] Rangom YP. Double Layer Formation and Cation Pseudo- Intercalation Supercapacitor Carbon Nanotube Composite Electrodes with Enhanced Electrochemical Performances. Published online 2014.
  • [78] Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2015;191(C):33-40. doi:10.1016/j.mseb.2014.10.009.
  • [79] Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a Modular and Open-source Software project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 2009;21(39):395502. doi:10.1088/0953-8984/21/39/395502.
  • [80] Giannozzi P, Andreussi O, Brumme T, et al. Advanced Capabilities for Materials Modelling With Quantum ESPRESSO. Journal of Physics: Condensed Matter. 2017;29(46):465901. doi:10.1088/1361-648X/aa8f79.
  • [81] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996;77(18):3865-3868. doi:10.1103/PhysRevLett.77.3865.
  • [82] Arunajatesan S, Carim AH. Symmetry and crystal structure of Ti3SiC2. Materials Letters. 1994;20(5-6):319-324. doi:10.1016/0167-577X(94)90037-X.
  • [83] Pinek D, Ito T, Furuta K, et al. Near Fermi Level Electronic Structure of Ti3SiC2 Revealed by Angle-resolved Photoemission Apectroscopy. Physical Review B. 2020;102(7):075111. doi:10.1103/PhysRevB.102.075111.
  • [84] Zhang L, Su W, Shu H, et al. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International. 2019;45(9):11468-11474. doi:10.1016/j.ceramint.2019.03.014.
Yıl 2024, Cilt: 25 Sayı: 3, 341 - 367, 30.09.2024
https://doi.org/10.18038/estubtda.1405850

Öz

Kaynakça

  • [1] Su X, Zhang J, Mu H, et al. Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. Journal of Alloys and Compounds. 2018;752:32-39. doi:10.1016/j.jallcom.2018.04.152.
  • [2] Zhu H. Functional metal carbide nano structures with unique thermal and electrical chemical properties. Published online 2018.
  • [3] Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Computational Materials Science. 2012;65:104-114. doi:10.1016/j.commatsci.2012.07.011.
  • [4] Agartan L, Hantanasirisakul K, Buczek S, et al. Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination. 2020;477. doi:10.1016/j.desal.2019.114267.
  • [5] Lv G, Wang J, Shi Z, Fan L. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Materials Letters. 2018;219:45-50. doi:10.1016/j.matlet.2018.02.016.
  • [6] Salim O, Mahmoud KA, Pant KK, Joshi RK. Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry. 2019;14:100191. doi:10.1016/j.mtchem.2019.08.010.
  • [7] Eklund P, Rosen J, Persson POÅ. Layered ternary Mn+1AXn phases and their 2D derivative MXene: An overview from a thin-film perspective. Journal of Physics D: Applied Physics. 2017;50(11). doi:10.1088/1361-6463/aa57bc.
  • [8] Venkateshalu S, Grace AN. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Applied Materials Today. 2020;18:100509. doi:10.1016/j.apmt.2019.100509.
  • [9] Alhabeb M, Maleski K, Mathis TS, et al. Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition. 2018;57(19):5444-5448. doi:10.1002/anie.201802232.
  • [10] Cui G, Zheng X, Lv X, Jia Q, Xie W, Gu G. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceramics International. 2019;45(17):23600-23610. doi:10.1016/j.ceramint.2019.08.071.
  • [11] Gogotsi Y, Anasori B. The Rise of MXenes. ACS Nano. 2019;13(8):8491-8494. doi:10.1021/acsnano.9b06394.
  • [12] Zhao S, Nivetha R, Qiu Y, Guo X. Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications. Chinese Chemical Letters. 2020;31(4):947-952. doi:10.1016/j.cclet.2019.11.045.
  • [13] Rasool K, Pandey RP, Rasheed PA, Buczek S, Gogotsi Y, Mahmoud KA. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today. 2019;30(November):80-102. doi:10.1016/j.mattod.2019.05.017.
  • [14] Halim J, Cook KM, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science. 2016;362:406-417. doi:10.1016/j.apsusc.2015.11.089.
  • [15] Collini P. Deposizione Elettroforetica Di Film Di Mxene Per Applicazioni Funzionali. MaxMaterialsDrexelEdu. Published online 2017. http://max.materials.drexel.edu/wp-content/uploads/Pieralberto_Collini.pdf.
  • [16] Tang J, Yi W, Zhong X, et al. Laser writing of the restacked titanium carbide MXene for high performance supercapacitors. Energy Storage Materials. 2020;32(July):418-424. doi:10.1016/j.ensm.2020.07.028.
  • [17] Wild M, GregoryJ.Offe. Lithium-Sulfur Batteries. John Wiley & Sons Ltd; 2019.
  • [18] Shi L. From MAX phases to MXenes : synthesis, characterization and electronic properties. Published online 2017.
  • [19] Jo G. Proton Hopping in a Single Layer Water Between MXene Layers Using ReaxFF MD Simulation. 2017;(May).
  • [20] Halim J. Synthesis and Characterization of 2D Nanocrystals and Thin Films of Transition Metal Carbides (MXenes). 2014;(1679). doi:10.3384/lic.diva-111128.
  • [21] Magné D. Synthèse et structure électronique de phases MAX et MXènes. Published online 2016. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/83ffbfba-e881-4604-9aff-2875945e1f3b.
  • [22] M. Higashi, S. Momono, K. Kishida, N. L. Okamoto, and H. Inui, “Anisotropic plastic deformation of single crystals of the MAX phase compound Ti3SiC2 investigated by micropillar compression,” Acta Materialia, vol. 161, pp. 161–170, 2018, doi: 10.1016/j.actamat.2018.09.024.
  • [23] Zhu M, Wang R, Chen C, Zhang HB, Zhang GJ. Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti. Ceramics International. 2017;43(7):5708-5714. doi:10.1016/j.ceramint.2017.01.111.
  • [24] Sun ZM, Zou Y, Tada S, Hashimoto H. Effect of Al addition on pressureless reactive sintering of Ti3SiC2. Scripta Materialia. 2006;55(11):1011-1014. doi:10.1016/j.scriptamat.2006.08.019.
  • [25] Zhang J, Wang L, Jiang W, Chen L. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering. Materials Science and Engineering A. 2008;487(1-2):137-143. doi:10.1016/j.msea.2007.12.004.
  • [26] Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials. 2017;2(2). doi:10.1038/natrevmats.2016.98.
  • [27] Li J, Kurra N, Seredych M, Meng X, Wang H, Gogotsi Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy. 2019;56(November 2018):151-159. doi:10.1016/j.nanoen.2018.11.042.
  • [28] Hu T, Yang J, Wang X. Carbon vacancies in Ti2CT2 MXenes: Defects or a new opportunity? Physical Chemistry Chemical Physics. 2017;19(47):31773-31780. doi:10.1039/c7cp06593k.
  • [29] Wang Y, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters. 2020;31(4):937-946. doi:10.1016/j.cclet.2019.11.016.
  • [30] Ward J, Middleburgh S, Topping M, et al. Crystallographic evolution of MAX phases in proton irradiating environments. Journal of Nuclear Materials. 2018;502:220-227. doi:10.1016/j.jnucmat.2018.02.008.
  • [31] Jung Y Il, Park DJ, Park JH, Park JY, Kim HG, Koo YH. Effect of TiSi2/Ti3SiC2 matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties. Journal of the European Ceramic Society. 2016;36(6):1343-1348. doi:10.1016/j.jeurceramsoc.2016.01.015.
  • [32] Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C. 2017;5(10):2488-2503. doi:10.1039/c7tc00140a.
  • [33] Acerce M. Electrochemical Charge Storage and Electrochemomechanical Behavior of Chemically Exfoliated & Restacked MoS2 Nanosheets. Published online 2016.
  • [34] Abdelmalak MN. MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries. Published online 2014.
  • [35] Boota M. Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage. ECS Meeting Abstracts. 2017;(September). doi:10.1149/ma2017-01/43/2013.
  • [36] Ghidiu MJ. Ions in MXene: Characterization and Control of Interlayer Cations and their Effects on Structure and Properties of 2D Transition Metal Carbides. 2018;(June).
  • [37] Colón MG. Max-Phase Slurry Coatings For High Temperature Oxidation Protectıon of Ti Based Alloys. Published online 2014.
  • [38] Lane NJ. Lattice Dynamical Studies of Select MAX Phases. 2013;(April).
  • [39] Karlsson L. Transmission Electron Microscopy of 2D Materials: Structure and Surface Properties. 2016;(1745). doi:10.3384/diss.diva-127526.
  • [40] Zhang X, Liu Y, Dong S, Yang J, Liu X. Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. Journal of Alloys and Compounds. 2019;790:517-523. doi:10.1016/j.jallcom.2019.03.219.
  • [41] Wen Y, Rufford TE, Chen X, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38(June):368-376. doi:10.1016/j.nanoen.2017.06.009.
  • [42] Lukatskaya MR. Capacitive Performance of Two-Dimensional Metal Carbides. 2015;(December). doi:10.1145/3132847.3132886.
  • [43] Ahmed B. Surface Modification of MXenes : A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices. Published online 2017.
  • [44] Rajagopalan Kannan DR, Terala PK, Moss PL, Weatherspoon MH. Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries. International Journal of Electrochemistry. 2018;2018:1-7. doi:10.1155/2018/1925708.
  • [45] Meng J, Zhang F, Zhang L, et al. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry. 2020;46:256-263. doi:10.1016/j.jechem.2019.10.008.
  • [46] Wang CH, Kurra N, Alhabeb M, Chang JK, Alshareef HN, Gogotsi Y. Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega. 2018;3(10):12489-12494. doi:10.1021/acsomega.8b02032.
  • [47] Tang H, Li W, Pan L, et al. A Robust, Freestanding MXene-Sulfur Conductive Paper for Long-Lifetime Li–S Batteries. Advanced Functional Materials. 2019;29(30):1-10. doi:10.1002/adfm.201901907.
  • [48] Jiang W, Henager CH, Varga T, et al. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2. Journal of Nuclear Materials. 2015;462:310-320. doi:10.1016/j.jnucmat.2015.04.002
  • [49] Jacques S, Fakih H, Viala JC. Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: Effect on the ternary carbide texture. Thin Solid Films. 2010;518(18):5071-5077. doi:10.1016/j.tsf.2010.02.059.
  • [50] Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal. 2019;359(November 2018):1265-1302. doi:10.1016/j.cej.2018.11.051.
  • [51] Min B. Broadly defined synthesis and properties of phase change materials. Published online 2018.
  • [52] Mashtalir O. Chemistry of Two-Dimensional Transition Metal Carbides (MXenes). Published online 2015.
  • [53] Jaffari ZH, Abuabdou SMA, Ng D-Q, Bashir MJK. Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem. 2021;28(April):100256. doi:10.1016/j.flatc.2021.100256.
  • [54] Ashton M. Computational Methods for the Discovery and Characterization of Two-Dmensional Materials. Published online 2017.
  • [55] Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011;23(37):4248-4253. doi:10.1002/adma.201102306.
  • [56] Liao Y, Qian J, Xie G, et al. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental. 2020;273(February):119054. doi:10.1016/j.apcatb.2020.119054.
  • [57] Wen Y, Li R, Liu J, et al. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. Journal of Colloid and Interface Science. 2021;604:239-247. doi:10.1016/j.jcis.2021.06.020.
  • [58] Chen Y-H, Qi M-Y, Li Y-H, et al. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Reports Physical Science. 2021;2(3):100371. doi:10.1016/j.xcrp.2021.100371.
  • [59] Zhao X, Chen J, Zhao C, et al. Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study. Applied Surface Science. 2021;570(August):151183. doi:10.1016/j.apsusc.2021.151183.
  • [60] Mondal K, Ghosh P. Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction. Solid State Communications. 2019;299(March):113657. doi:10.1016/j.ssc.2019.113657.
  • [61] Ekici MR, Atasoy A. Graphene Alternative 2D Materials: MXene. In: 20th International Metallurgy and Materials Congress. ; 2021:396-400.
  • [62] Ekici MR, Atasoy A. Effect of HF Acid on The Formation of New 2D Ti3C2 Mxene From Ti3SiC2. Selcuk University Journal of Engineering Sciences. 2020;Special Is(1):1-23. https://sujes.selcuk.edu.tr/sujes/article/view/512.
  • [63] Ekici MR, Tabar E, Atasoy A, Bulut E, Hoşgör G. Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti3C2Tx electrodes. Canadian Metallurgical Quarterly. Published online September 16, 2022:1-22. doi:10.1080/00084433.2022.2124108.
  • [64] Chae A, Jang H, Koh DY, Yang CM, Kim YK. Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes. Talanta. 2020;209(November 2019):120531. doi:10.1016/j.talanta.2019.120531.
  • [65] Ren C (Evelyn). Interaction of Ions with Two-Dimensional Transition Metal Carbide (MXene) Films. ProQuest Dissertations and Theses. 2017;(July).
  • [66] Dall’Agnese Y. Study of Early Transition Metal Carbides for Energy Storage Applications. 2016;(March).
  • [67] Steinberg J a. Formation of Thin Films from MXene Flakes. Published online 2013.
  • [68] Zhang C (John), Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials. 2019;16(May 2018):102-125. doi:10.1016/j.ensm.2018.05.003.
  • [69] Shah JB. Synthesis of MXene-Epoxy Nanocomposites. 2017;(June).
  • [70] Hatter CB, Shah J, Anasori B, Gogotsi Y. Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part B: Engineering. 2020;182(June 2019):107603. doi:10.1016/j.compositesb.2019.107603.
  • [71] Rosenkranz A, Grützmacher PG, Espinoza R, et al. Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants - Role of surface terminations and intercalated water. Applied Surface Science. 2019;494(July):13-21. doi:10.1016/j.apsusc.2019.07.171.
  • [72] Zhang S. Study of chemical reactivity of MAX phase single crystals. Published online 2018.
  • [73] Aghamohammadi H, Heidarpour A, Jamshidi R. The phase and morphological evolution of Ti3SiC2 MAX phase powder after HF treatment. Ceramics International. 2018;44(15):17992-18000. doi:10.1016/j.ceramint.2018.06.278.
  • [74] Piechowiak MA, Henon J, Durand-Panteix O, et al. Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. Journal of the European Ceramic Society. 2014;34(5):1063-1072. doi:10.1016/j.jeurceramsoc.2013.11.019.
  • [75] Schultheiß J, Dermeik B, Filbert-Demut I, et al. Processing and characterization of paper-derived Ti3SiC2 based ceramic. Ceramics International. 2015;41(10):12595-12603. doi:10.1016/j.ceramint.2015.06.085.
  • [76] Guo J, Zhao Y, Liu A, Ma T. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta. 2019;305:164-174. doi:10.1016/j.electacta.2019.03.025.
  • [77] Rangom YP. Double Layer Formation and Cation Pseudo- Intercalation Supercapacitor Carbon Nanotube Composite Electrodes with Enhanced Electrochemical Performances. Published online 2014.
  • [78] Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2015;191(C):33-40. doi:10.1016/j.mseb.2014.10.009.
  • [79] Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a Modular and Open-source Software project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 2009;21(39):395502. doi:10.1088/0953-8984/21/39/395502.
  • [80] Giannozzi P, Andreussi O, Brumme T, et al. Advanced Capabilities for Materials Modelling With Quantum ESPRESSO. Journal of Physics: Condensed Matter. 2017;29(46):465901. doi:10.1088/1361-648X/aa8f79.
  • [81] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996;77(18):3865-3868. doi:10.1103/PhysRevLett.77.3865.
  • [82] Arunajatesan S, Carim AH. Symmetry and crystal structure of Ti3SiC2. Materials Letters. 1994;20(5-6):319-324. doi:10.1016/0167-577X(94)90037-X.
  • [83] Pinek D, Ito T, Furuta K, et al. Near Fermi Level Electronic Structure of Ti3SiC2 Revealed by Angle-resolved Photoemission Apectroscopy. Physical Review B. 2020;102(7):075111. doi:10.1103/PhysRevB.102.075111.
  • [84] Zhang L, Su W, Shu H, et al. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International. 2019;45(9):11468-11474. doi:10.1016/j.ceramint.2019.03.014.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi, Fonksiyonel Malzemeler, Üretim Metalurjisi, Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mesut Ramazan Ekici 0000-0002-3024-2567

Huseyin Yasin Uzunok 0000-0002-2130-1748

Emrah Bulut 0000-0002-7623-8088

Hüseyin Murat Tütüncü 0000-0003-1979-1626

Ahmet Atasoy 0000-0003-1564-8793

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 16 Aralık 2023
Kabul Tarihi 20 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 3

Kaynak Göster

AMA Ekici MR, Uzunok HY, Bulut E, Tütüncü HM, Atasoy A. MXENE 2D Ti3C2TX PRODUCTION AND SPIN-ORBIT EFFECT (SOI) OF Ti3C2(OH)2 IN THE ELECTRONIC STRUCTURE. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Eylül 2024;25(3):341-367. doi:10.18038/estubtda.1405850