Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 1, 34 - 48, 28.02.2020
https://doi.org/10.20290/estubtdb.530370

Öz

Kaynakça

  • [1] Seyler, C. E., Fenstermacher, D.L. A symmetric regularized-long-wave equation. Physics of Fluids. 1984; 27(1), 1-15.
  • [2] Guo, B. L. The spectral method for symmetric regularized wave equations, Journal of Computational Mathematics, 1987; 5(4), 297-306.
  • [3] Duan, G. S., Zao, T.F. Solitary wave solutions for equation of generalized symmetric regular long wave. Journal of Changsha University. 2000; 14(2), 31-32. [4] Montes, A. M. Travelling waves for a generalized symmetric regularized-long-wave model. International Journal of Mathematical Analysis, 2015; 9(33); 1609 – 1625.
  • [5] Chen, L. Stability and instability of solitary waves for generalized symmetric regularized long wave equation. Physica D. 1998; 118(1-2), 53-68.
  • [6] Shang, Y. Guo, B. Analysis of chebyshev pseduspectral method for multi-dimensional generalized SRLW equations. Applied Mathematics and Mechanics. 2003; 24(10), 1168-1183.
  • [7] Yong, C., Biao, L. Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms. Chinese Physics, 2004, 13(3); 302-306. [8] Zhou, J. Numerical simulation of generalized symmetric regularized long-wave equations with damping term. International Journal of Digital Content Technology and its Applications. 2013; 7(6); 1142- 1149.
  • [9] Xu, Y., Hu, B., Xie, X., Hu, J. Mixed finite element analysis for dissipative SRLW equations with damping term. Applied Mathematics and Computation. 2012; 218; 4788–4797.
  • [10] Hu, J., Xu, Y., Hu, B. A linear difference scheme for dissipative symmetric regularized long wave equations with damping term. Journal of Boundary Value Problems. 2010; 2010, 1-16.
  • [11] Hu, J., Hu, B., Xu, Y. C-N difference schemes for dissipative symmetric regularized long wave equations with damping term. Mathematical Problems in Engineering. 2011; 2011; 1-16.
  • [12] Shang, Y. D., Guo, B. L. Exponential attractor for the generalized symmetric regularized long wave equation with damping term. Applied Mathematics and Mechanics, 2005; 26(3); 283-291.
  • [13] Schaback, R. The meshless kernel-based method of lines for solving nonlinear evolution equations. Preprint, Göttingen, 2008.
  • [14] Wendland, H. Piecewise polynomial positive definite and compactly supported radial basis functions of minimal degree. Advances in Computational Mathematics. 1995; 4(1); 389-396.

THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM

Yıl 2020, Cilt: 8 Sayı: 1, 34 - 48, 28.02.2020
https://doi.org/10.20290/estubtdb.530370

Öz

In this study, we dealt with numerical
solutions of the dissipative generalized symmetric regularized long wave
equations with damping term. The problem is a nonlinear partial differential
equations system. Numerical solutions of the problem were evaluated by using
the meshless kernel based method of lines for known initial-boundary conditions
on the given solution domain. This used numerical method is known to be a truly
meshless approximation because any separation method is required. Radial basis
functions are used as kernel functions on the meshless method. The performance
of this meshless method was illustrated on many standard test problems.
Numerical computations were performed by using Gaussian and Wendland’s
functions. Error comparisons for computed numerical results were made in the
sense of L
 error norm. Graphs of wave simulations for
test problems are plotted in this study. The results show that the used
meshless method is suitable to solve numerically to this type nonlinear
equations system.

Kaynakça

  • [1] Seyler, C. E., Fenstermacher, D.L. A symmetric regularized-long-wave equation. Physics of Fluids. 1984; 27(1), 1-15.
  • [2] Guo, B. L. The spectral method for symmetric regularized wave equations, Journal of Computational Mathematics, 1987; 5(4), 297-306.
  • [3] Duan, G. S., Zao, T.F. Solitary wave solutions for equation of generalized symmetric regular long wave. Journal of Changsha University. 2000; 14(2), 31-32. [4] Montes, A. M. Travelling waves for a generalized symmetric regularized-long-wave model. International Journal of Mathematical Analysis, 2015; 9(33); 1609 – 1625.
  • [5] Chen, L. Stability and instability of solitary waves for generalized symmetric regularized long wave equation. Physica D. 1998; 118(1-2), 53-68.
  • [6] Shang, Y. Guo, B. Analysis of chebyshev pseduspectral method for multi-dimensional generalized SRLW equations. Applied Mathematics and Mechanics. 2003; 24(10), 1168-1183.
  • [7] Yong, C., Biao, L. Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms. Chinese Physics, 2004, 13(3); 302-306. [8] Zhou, J. Numerical simulation of generalized symmetric regularized long-wave equations with damping term. International Journal of Digital Content Technology and its Applications. 2013; 7(6); 1142- 1149.
  • [9] Xu, Y., Hu, B., Xie, X., Hu, J. Mixed finite element analysis for dissipative SRLW equations with damping term. Applied Mathematics and Computation. 2012; 218; 4788–4797.
  • [10] Hu, J., Xu, Y., Hu, B. A linear difference scheme for dissipative symmetric regularized long wave equations with damping term. Journal of Boundary Value Problems. 2010; 2010, 1-16.
  • [11] Hu, J., Hu, B., Xu, Y. C-N difference schemes for dissipative symmetric regularized long wave equations with damping term. Mathematical Problems in Engineering. 2011; 2011; 1-16.
  • [12] Shang, Y. D., Guo, B. L. Exponential attractor for the generalized symmetric regularized long wave equation with damping term. Applied Mathematics and Mechanics, 2005; 26(3); 283-291.
  • [13] Schaback, R. The meshless kernel-based method of lines for solving nonlinear evolution equations. Preprint, Göttingen, 2008.
  • [14] Wendland, H. Piecewise polynomial positive definite and compactly supported radial basis functions of minimal degree. Advances in Computational Mathematics. 1995; 4(1); 389-396.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Bahar Karaman 0000-0001-6631-8562

Yılmaz Dereli 0000-0003-0149-0542

Yayımlanma Tarihi 28 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 1

Kaynak Göster

APA Karaman, B., & Dereli, Y. (2020). THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(1), 34-48. https://doi.org/10.20290/estubtdb.530370
AMA Karaman B, Dereli Y. THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. Şubat 2020;8(1):34-48. doi:10.20290/estubtdb.530370
Chicago Karaman, Bahar, ve Yılmaz Dereli. “THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, sy. 1 (Şubat 2020): 34-48. https://doi.org/10.20290/estubtdb.530370.
EndNote Karaman B, Dereli Y (01 Şubat 2020) THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 1 34–48.
IEEE B. Karaman ve Y. Dereli, “THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 8, sy. 1, ss. 34–48, 2020, doi: 10.20290/estubtdb.530370.
ISNAD Karaman, Bahar - Dereli, Yılmaz. “THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/1 (Şubat 2020), 34-48. https://doi.org/10.20290/estubtdb.530370.
JAMA Karaman B, Dereli Y. THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8:34–48.
MLA Karaman, Bahar ve Yılmaz Dereli. “THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 8, sy. 1, 2020, ss. 34-48, doi:10.20290/estubtdb.530370.
Vancouver Karaman B, Dereli Y. THE MESHLESS KERNEL-BASED METHOD OF LINES FOR SOLVING THE DISSIPATIVE GENERALIZED SRLW EQUATIONS WITH DAMPING TERM. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8(1):34-48.