Araştırma Makalesi
BibTex RIS Kaynak Göster

OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY

Yıl 2023, Cilt: 11 Sayı: 1, 29 - 35, 28.02.2023
https://doi.org/10.20290/estubtdb.1096269

Öz

Quantum dots are tiny semiconductor nanocrystals. Their dimensions are between about 2 and 10 nm. They have attracted much attention due to their unique electronic and optical properties. These particles can be synthesized in a variety of ways. Synthesis methods of quantum dots can be classified into top-down and bottom-up. Top-down approach is a fragmentation process of bulk material. In contrast to top-down, quantum dots are constructed from atoms and molecules of the material at bottom-up procedure. Ball milling, optical lithography, laser ablation and arc-discharge are some top-down methods. However, chemical reduction, thermal decomposition, sol-gel and ultrasonic spray pyrolysis are bottom-up methods. In this study, chemical hot-injection synthesis method of cadmium selenide quantum dots which is a kind of bottom-up procedure will be explained. Cadmium selenide quantum dots have been grown in hot solvent at 259oC. Concentration of cadmium selenide quantum dots dispersed in toluene has been adjusted by observing their first exciton peak. First excitonic absorbance peak of cadmium selenide quantum dots has been measured at around 2.18 eV. Transmission electron microscope photo of these growth quantum dots has been shown. The average diameter of cadmium selenide quantum dots has been found to be approximately 3.48 nm. Lattice fringe spacing of cadmium selenide quantum dots has been measured as ~0.35 nm.

Destekleyen Kurum

Toros University

Proje Numarası

2015-01-01-01-BAP-MUHF

Teşekkür

CdSe quantum dots were synthesized at Nanomaterial Production Laboratory in Toros University. I would like to thank to Prof. Dr. Hikmet YÜKSELİCİ for permitting me to use the optical absorbance measurement system constructed at Photonics Laboratory in Yıldız Technical University. I would like to thank to Dr. Mehmet POYRAZ for taking TEM photos of the samples at Research and Application Centre for Research Laboratories in Muğla Sıtkı Koçman University.

Kaynakça

  • [1] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996; 271: 933-937.
  • [2] Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanics of larger semiconductor clusters ("quantum dots"). Annu Rev Phys Chem. 1990; 41: 477-496.
  • [3] Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters 2012; 7: 1-14.
  • [4] Pu Y, Cai F, Wang D, Wang JX, Chen JF. Colloidal synthesis of semiconductor quantum dots towards large-scale production: a review. Ind Eng Chem Res 2018; 57: 1790–1802.
  • [5] Xu K, Liu C, Chung WJ, Heo J. Optical properties of CdSe quantum dots in silicate glasses. Journal of Non-Crystalline Solids 2010; 356: 2299–2301.
  • [6] Kini S, Ganiga V, Kulkarni SD, Chidangil S, George SD. Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J Nanopart Res 2018; 20: 1-13.
  • [7] Moghaddam MM, Baghbanzadeh M, Keilbach A, Kappe CO. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?. Nanoscale 2012; 4: 7435-7442.
  • [8] Yükselici MH. Growth kinetics of CdSe nanoparticles in glass. J Phys: Condens Matter 2002; 14: 1153-1162.
  • [9] Rabouw FT, Donega CDM. Excited-state dynamics in colloidal semiconductor nanocrystals. Top Curr Chem (Z) 2016; 374: 1-30.
  • [10] Díaz‑González M, Escosura‑Muñiz ADL, Fernandez‑Argüelles MT, Alonso FJG, Costa‑Fernandez JM. Quantum dot bioconjugates for diagnostic applications. Topics in Current Chemistry 2020; 378: 1-44.
  • [11] Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 1993; 115: 8706-8715.
  • [12] Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics 2013; 7: 13-23.
  • [13] McKittrick J, Shea-Rohwer LE. Review: Down conversion materials for solid-state lighting. J Am Ceram Soc 2014; 97: 1327–1352.
  • [14] Chandan HR, Schiffman JD, Balakrishna RG. Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical 2018; 258: 1191-1214.
  • [15] Nizamoglu S, Ozel T, Sari E, Demir HV. White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007; 18: 1-5.
  • [16] Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 2003; 15: 2854-2860.
  • [17] Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Guerzo AD, Aymonier C. Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater Chem C 2015; 3: 7561-7566.
  • [18] Duan X, Liu X, Chen Q, Li H, Li J, Hu X, Li Y, Ma J, Zheng W. Ionic liquid-assisted synthesis of CdSe dendrites from nanospheres through oriented attachment. Dalton Trans 2011; 40: 1924–1928.
  • [19] Chakrabarty A, Chatterjee S, Maitra U. Cadmium deoxycholate: a new and efficient precursor for highly luminescent CdSe nanocrystals. J Mater Chem C 2013; 1: 2136–2144.
  • [20] Xia X, Liu Z, Du G, Li Y, Ma M. Wurtzite and zinc-blende CdSe based core/shell semiconductor nanocrystals: structure, morphology and photoluminescence. Journal of Luminescence 2010; 130: 1285–1291.
  • [21] Soni U, Arora V, Sapra S. Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 2013; 15: 5458-5463.
  • [22] Majumder S, Bae IT, Maye MM. Investigating the role of polytypism in the growth of multi-shell CdSe/CdZnS quantum dots. J Mater Chem C 2014; 2: 4659–4666.

SOĞURMA SPEKTROSKOPİSİ ve GEÇİRİMLİ ELEKTRON MİKROSKOPİ ile KADMİYUM SELENÜR KUANTUM NOKTALARININ OPTİK TESPİTİ

Yıl 2023, Cilt: 11 Sayı: 1, 29 - 35, 28.02.2023
https://doi.org/10.20290/estubtdb.1096269

Öz

Kuantum noktaları ufacık yarıiletken nanokristallerdir. Boyutları yaklaşık 2 ile 10 nm arasındadır. Eşsiz elektronik ve optik özellikleri nedeniyle büyük ilgi gördüler. Bu parçacıklar çeşitli yollarla sentezlenebilir. Kuantum noktalarının sentez yöntemleri, yukarıdan aşağıya ve aşağıdan yukarıya olarak sınıflandırılabilir. Yukarıdan aşağıya yaklaşım, yığın malzemenin parçalanma sürecidir. Yukarıdan aşağıyanın aksine, kuantum noktaları aşağıdan yukarıya yönteminde malzemenin atomlarından ve moleküllerinden oluşturulur. Bilyalı öğütme, optik litografi, lazer ablasyon ve ark boşaltma bazı yukarıdan aşağıya yöntemlerdir. Ancak, kimyasal indirgeme, ısısal ayrışma, sol-jel ve ultrasonik sprey piroliz aşağıdan yukarıya yöntemlerdir. Bu çalışmada, bir tür aşağıdan yukarıya metot olan kadmiyum selenür kuantum noktalarının kimyasal sıcak enjeksiyon sentez yöntemi anlatılacaktır. Kadmiyum selenür kuantum noktaları, 259oC'de sıcak çözücü içinde büyütülmüştür. Toluen içinde dağılmış kadmiyum selenür kuantum noktalarının konsantrasyonu, birinci eksiton tepesi gözlemlenerek ayarlanmıştır. Kadmiyum selenür kuantum noktalarının ilk eksitonik absorbans tepesi yaklaşık 2,18 eV'de ölçülmüştür. Bu büyütülmüş kuantum noktalarının geçirimli elektron mikroskop fotoğrafı gösterilmiştir. Kadmiyum selenür kuantum noktalarının ortalama çapının yaklaşık 3,48 nm olduğu bulunmuştur. Kadmiyum selenür kuantum noktalarının örgü saçak aralığı ~0,35 nm olarak ölçülmüştür.

Proje Numarası

2015-01-01-01-BAP-MUHF

Kaynakça

  • [1] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996; 271: 933-937.
  • [2] Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanics of larger semiconductor clusters ("quantum dots"). Annu Rev Phys Chem. 1990; 41: 477-496.
  • [3] Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters 2012; 7: 1-14.
  • [4] Pu Y, Cai F, Wang D, Wang JX, Chen JF. Colloidal synthesis of semiconductor quantum dots towards large-scale production: a review. Ind Eng Chem Res 2018; 57: 1790–1802.
  • [5] Xu K, Liu C, Chung WJ, Heo J. Optical properties of CdSe quantum dots in silicate glasses. Journal of Non-Crystalline Solids 2010; 356: 2299–2301.
  • [6] Kini S, Ganiga V, Kulkarni SD, Chidangil S, George SD. Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J Nanopart Res 2018; 20: 1-13.
  • [7] Moghaddam MM, Baghbanzadeh M, Keilbach A, Kappe CO. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?. Nanoscale 2012; 4: 7435-7442.
  • [8] Yükselici MH. Growth kinetics of CdSe nanoparticles in glass. J Phys: Condens Matter 2002; 14: 1153-1162.
  • [9] Rabouw FT, Donega CDM. Excited-state dynamics in colloidal semiconductor nanocrystals. Top Curr Chem (Z) 2016; 374: 1-30.
  • [10] Díaz‑González M, Escosura‑Muñiz ADL, Fernandez‑Argüelles MT, Alonso FJG, Costa‑Fernandez JM. Quantum dot bioconjugates for diagnostic applications. Topics in Current Chemistry 2020; 378: 1-44.
  • [11] Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 1993; 115: 8706-8715.
  • [12] Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics 2013; 7: 13-23.
  • [13] McKittrick J, Shea-Rohwer LE. Review: Down conversion materials for solid-state lighting. J Am Ceram Soc 2014; 97: 1327–1352.
  • [14] Chandan HR, Schiffman JD, Balakrishna RG. Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical 2018; 258: 1191-1214.
  • [15] Nizamoglu S, Ozel T, Sari E, Demir HV. White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007; 18: 1-5.
  • [16] Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 2003; 15: 2854-2860.
  • [17] Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Guerzo AD, Aymonier C. Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater Chem C 2015; 3: 7561-7566.
  • [18] Duan X, Liu X, Chen Q, Li H, Li J, Hu X, Li Y, Ma J, Zheng W. Ionic liquid-assisted synthesis of CdSe dendrites from nanospheres through oriented attachment. Dalton Trans 2011; 40: 1924–1928.
  • [19] Chakrabarty A, Chatterjee S, Maitra U. Cadmium deoxycholate: a new and efficient precursor for highly luminescent CdSe nanocrystals. J Mater Chem C 2013; 1: 2136–2144.
  • [20] Xia X, Liu Z, Du G, Li Y, Ma M. Wurtzite and zinc-blende CdSe based core/shell semiconductor nanocrystals: structure, morphology and photoluminescence. Journal of Luminescence 2010; 130: 1285–1291.
  • [21] Soni U, Arora V, Sapra S. Wurtzite or zinc blende? Surface decides the crystal structure of nanocrystals. CrystEngComm 2013; 15: 5458-5463.
  • [22] Majumder S, Bae IT, Maye MM. Investigating the role of polytypism in the growth of multi-shell CdSe/CdZnS quantum dots. J Mater Chem C 2014; 2: 4659–4666.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Çağdaş Allahverdi 0000-0002-6825-5099

Proje Numarası 2015-01-01-01-BAP-MUHF
Yayımlanma Tarihi 28 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Allahverdi, Ç. (2023). OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 11(1), 29-35. https://doi.org/10.20290/estubtdb.1096269
AMA Allahverdi Ç. OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. Şubat 2023;11(1):29-35. doi:10.20290/estubtdb.1096269
Chicago Allahverdi, Çağdaş. “OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 11, sy. 1 (Şubat 2023): 29-35. https://doi.org/10.20290/estubtdb.1096269.
EndNote Allahverdi Ç (01 Şubat 2023) OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11 1 29–35.
IEEE Ç. Allahverdi, “OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 1, ss. 29–35, 2023, doi: 10.20290/estubtdb.1096269.
ISNAD Allahverdi, Çağdaş. “OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11/1 (Şubat 2023), 29-35. https://doi.org/10.20290/estubtdb.1096269.
JAMA Allahverdi Ç. OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2023;11:29–35.
MLA Allahverdi, Çağdaş. “OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 1, 2023, ss. 29-35, doi:10.20290/estubtdb.1096269.
Vancouver Allahverdi Ç. OPTICAL DETECTION of CADMIUM SELENIDE QUANTUM DOTS via ABSORPTION SPECTROSCOPY and TRANSMISSION ELECTRON MICROSCOPY. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2023;11(1):29-35.