Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ

Yıl 2019, Cilt: 8 Sayı: 2, 218 - 228, 31.07.2019
https://doi.org/10.18036/estubtdc.598905

Öz



Physalis
cinsinin meyvesi olan altın çilek, (Physalis peruviana L.) sağlık üzerine
olumlu etkileri nedeni ile ilgi çekmektedir. Bu çalışmada altın çileğin
olgunlaşmamış ve olgunlaşmış meyvelerinin bazı fiziko kimyasal özellikleri
(kuru madde, pH, suda çözünür kuru madde (SÇKM)), antioksidan aktivitesi ve
meyveye biyoaktivite kazandıran fotokimyasallarındaki (β-karoten, organik asit,
şeker ve fenolik bileşiklerindeki) değişim belirlenmiştir. Olgunlaşma seviyesi
arttıkça kuru madde
19.45 to
21.01’e
ve SÇKM 11.99 to 14.51’e, antioksidan
kapasite 3.52’den 8.07 µmol trolox/100 g kuru ağırlık (KA)’a, toplam fenolik
madde miktarı 6.27’den 19.00 mg Gallik Asit Eşdeğeri/100 g KA’a ve β-karoten
miktarı 20.38’den 139.57 mg/kg KA değerine artmıştır. Gallik asit ham ve olgun
meyvelerde başlıca fenolik bileşen olarak sırasıyla 495.00 ve 519.30 mg /kg KA
düzeylerinde saptanırken, ham meyvelerde prosiyanidin B1, kafeik asit ve rutin
saptanmamıştır. Sitrik asit miktarı 96.06’dan 83.69 mg/kg KA’a düşerken, malik
asit miktarı 10.33’den 14.54 mg/kg KA’a yükselmiştir. Elde edilen sonuçlar incelenen
özelliklerin meyvenin olgunluk düzeyinden etkilendiğini göstermiştir.

Kaynakça

  • [1] Etzbach L, Pfeiffer A, Fabian Weber F, Schieber A. Characterization of carotenoid profiles in golden berry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD APCI-MS. Food Chemistry 2018; 24: 508-517.
  • [2] Celikli FB, Akkelle P, Onus AN. In vitro salinity evaluation studies in golden berry (Physalis peruviana L.). Biotechnology Journal International 2017; 20: 1-8.
  • [3] Ramadan MF, Morsel JT. Oil extractability from enzymatically treated golden berry (Physalis peruviana L.) pomace: range of operational variables. International Journal of Food Science+Technology 2009; 44: 435-444.
  • [4] Ramadan MF. Bioactive phytochemicals, nutritional value and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International 2011; 44: 1830-1836.
  • [5] Nawirska-Olszan´ska A, Stepien B, Biesiada A, Kolniak-Ostek J, Oziembłowski M. Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods 2017; 6: 6-11.
  • [6] Yıldız G, İzli N, Ünal H, Uylaşer V. Physical and chemical characteristics of golden berry (Physalis peruviana L.). Journal of Food Science+Technology 2015; 52: 2320-2327.
  • [7] Valdenegro M, Fuentes L, Herrera R, Moya-Leon MA. Changes in antioxidant capacity during development and ripening of golden berry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biology and Technology 2012; 67: 110-117.
  • [8] Gutierrez MS, Trinchero GD, Cerri AM, Vilella F, Sozzi O. Different response of golden berry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Postharvest Biology and Technology 2007; 48: 199-205.
  • [9] Sözgen BK, Tütem E, Özer N, Apak R. Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. Journal of Agricultural and Food Chemistry 2013; 61:11371-11381.
  • [10] Ramadan MF, Moersel JG. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of golden berry (Physalis peruviana L.) juice. Journal of the Food and Agriculture 2007; 87: 452–460.
  • [11] Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International 2011; 44: 1733–1740.
  • [12] Muñoz NC, Floriano L, de Souza MP, Bandeira NMG, Osmar D, Prestes OD, Zanella R. Determination of pesticide residues in golden berry (Physalis peruviana L.) by modified QuEChERS method and Ultra-High Performance Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Food Analytical Methods 2017; 10: 320–329.
  • [13] Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugar, organic acids, anthocyanins and selected polyphenols. Food Chemistry 2009; 114: 511-515.
  • [14] Krayjalyte V, Venskutonis PR, Pukalskas A, Ĉesoniené & Daubaras T. Antioxidant properties and polyphenolic compositions of fruits from different European cran berry bush (Vibrunum opulus L.) genotypes. Food Chemistry 2013; 141: 3695-3702.
  • [15] Brand-William W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 2005; 28:25-30.
  • [16] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolonization assay. Free Radical Biology and Medicine 1999; 26: 1231-1237.
  • [17] Sadler G, Davis J, Dezman D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. Journal of Food Science 1990; 55: 1460-1461.
  • [18] Sturm K, Koron D, Stamper F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry 2003; 83: 417-422.
  • [19] Kim DO, Lee CY. Extraction and isolation of polyphenolics. In current protocols in food analytical chemistry, Wrolstad, R.E.Ed; John Willey and Sons: New York, 2002. pp. 11-12.
  • [20] Chambell OE, Padilla-Zakour OI. Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of northeast USA apricot (Prunus armeniaca) varieties. Journal of Agricultural and Food Chemistry 2013; 61: 12700-12710.
  • [21] Sharoba AM, Ramadan MF. Rheological behavior and physicochemical characteristics of golden berry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservations 2011; 35: 201-209.
  • [22] Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in cape gooseberry (Physalis peruviana L.). Journal of Science Food Agriculture 2015; 95: 1562-1569.
  • [23] Rop O, Micek J, Jurikova T, Valsikova M. Bioactive content and antioxidant capacity of cape gooseberry fruit. Central European Journal of Biology 2012; 7: 872-879.
  • [24] Torres-Ossandóna MJ, Vega-Gálveza A, López J, Stuckena K, Romerod J, Di Scala K. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). The Journal of Supercritical Fluids 2018; 138: 215-220.
  • [25] Mphahlele RR, Stander MA, Fawole OA, Opara UL. Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Scientia Horticulturae, 2014; 179: 36-45.
  • [26] Olivares-Tenorio AL, Dekke M, Verkerk R. Health-promoting compounds in cape gooseberry (Physalis peruviana L): Review from a supply chain perspective. Trends in Food Science Technology 2016; 57: 83-92.
  • [27] Olivares-Tenerio ML, Verek R, Bookel MAJS, Dekker M. Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis Peruviana l.). Journal of Functional Foods 2017; 32: 46-57.
  • [28] Dragovic-uzelac V, Levaj B, Mrkic V, Bursac D, Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry 2007; 102: 966–975.
  • [29] Wang S, and Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural Food Chemistry 2000; 48:140-146.
  • [30] Dokoozlian NK, Kliwer WM. Influence of light on grape berry growth and composition varies during fruit development, Journal of American Society Science 1996; 121: 869-874.
  • [31] Kliewer WM. Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes, American Journal of Enolology Viticulture 1977; 28: 96:103.
  • [32] Fischer G, Ebert G. Production seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality 2007; 81: 29-35.
  • [33] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review 1992; 58: 107-185.
  • [34] Fischer G, Ebert G, Lüdders P. Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Production 2.Conferance Tropical Fruits 2000; 531: 263-267.
  • [35] Çağlar MY, Demirci M. Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi 2017; 7: 18-26.
  • [36] Vega-Galves A, Lopez J, Torres-Ossandon AJ, Jose Galatto M, Puente-Diaz L, Quispe-Fuentes I, Di Scala K. High hydrostatic pressure effect on chemical composition, color, phenolic acid and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology 2014; 58: 519-526.

DETERMINATION OF COMPOSITIONAL PROPERTIES OF GOLDEN BERRY (Physalis peruvıana L.) AT DIFFERENT MATURITY STAGE

Yıl 2019, Cilt: 8 Sayı: 2, 218 - 228, 31.07.2019
https://doi.org/10.18036/estubtdc.598905

Öz



ABSTRACT



 



Golden
berry fruit (Phsalis peruviana L.),
which is belong to Phsalis genus, has
attracted attention due to its positive effects on human health. In this study,
changes in some physico-chemical properties [dry matter (DM), Soluble solid
content (SSC), pH], and bioactive properties antioxidant capacity, β-carotene,
organic acids, sugars and phenolic compositions

of golden berry
were determined at immature and mature stages. 
DM content increased from 19.45 to 21.01, SSC increased from 11.99 to
14.51, total phenolic compounds increased from 6.27 to 19.00 mg gallic acid
equivalent/ 100 g DM and β-carotene content increased from 20.38 to 139.57 mg/kg
DM) increased as fruits get matured.. Gallic acid was detected as the major
phenolic compound in immature and mature fruits at the level of
495.00
ve 519.30 mg/kg DM,
respectively,
while procyanidine B1, caffeic acid and rutin were not determined in immature
fruit. Amount of citric acid were decreased from 96.06 to83.69 mg/kg DM, while
malic acid increased from 10.33 to 14.54 mg/kg DM. The results showed that the
investigated attributes were affected by the maturity level.

Kaynakça

  • [1] Etzbach L, Pfeiffer A, Fabian Weber F, Schieber A. Characterization of carotenoid profiles in golden berry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD APCI-MS. Food Chemistry 2018; 24: 508-517.
  • [2] Celikli FB, Akkelle P, Onus AN. In vitro salinity evaluation studies in golden berry (Physalis peruviana L.). Biotechnology Journal International 2017; 20: 1-8.
  • [3] Ramadan MF, Morsel JT. Oil extractability from enzymatically treated golden berry (Physalis peruviana L.) pomace: range of operational variables. International Journal of Food Science+Technology 2009; 44: 435-444.
  • [4] Ramadan MF. Bioactive phytochemicals, nutritional value and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International 2011; 44: 1830-1836.
  • [5] Nawirska-Olszan´ska A, Stepien B, Biesiada A, Kolniak-Ostek J, Oziembłowski M. Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods 2017; 6: 6-11.
  • [6] Yıldız G, İzli N, Ünal H, Uylaşer V. Physical and chemical characteristics of golden berry (Physalis peruviana L.). Journal of Food Science+Technology 2015; 52: 2320-2327.
  • [7] Valdenegro M, Fuentes L, Herrera R, Moya-Leon MA. Changes in antioxidant capacity during development and ripening of golden berry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biology and Technology 2012; 67: 110-117.
  • [8] Gutierrez MS, Trinchero GD, Cerri AM, Vilella F, Sozzi O. Different response of golden berry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Postharvest Biology and Technology 2007; 48: 199-205.
  • [9] Sözgen BK, Tütem E, Özer N, Apak R. Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. Journal of Agricultural and Food Chemistry 2013; 61:11371-11381.
  • [10] Ramadan MF, Moersel JG. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of golden berry (Physalis peruviana L.) juice. Journal of the Food and Agriculture 2007; 87: 452–460.
  • [11] Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International 2011; 44: 1733–1740.
  • [12] Muñoz NC, Floriano L, de Souza MP, Bandeira NMG, Osmar D, Prestes OD, Zanella R. Determination of pesticide residues in golden berry (Physalis peruviana L.) by modified QuEChERS method and Ultra-High Performance Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Food Analytical Methods 2017; 10: 320–329.
  • [13] Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugar, organic acids, anthocyanins and selected polyphenols. Food Chemistry 2009; 114: 511-515.
  • [14] Krayjalyte V, Venskutonis PR, Pukalskas A, Ĉesoniené & Daubaras T. Antioxidant properties and polyphenolic compositions of fruits from different European cran berry bush (Vibrunum opulus L.) genotypes. Food Chemistry 2013; 141: 3695-3702.
  • [15] Brand-William W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 2005; 28:25-30.
  • [16] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolonization assay. Free Radical Biology and Medicine 1999; 26: 1231-1237.
  • [17] Sadler G, Davis J, Dezman D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. Journal of Food Science 1990; 55: 1460-1461.
  • [18] Sturm K, Koron D, Stamper F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry 2003; 83: 417-422.
  • [19] Kim DO, Lee CY. Extraction and isolation of polyphenolics. In current protocols in food analytical chemistry, Wrolstad, R.E.Ed; John Willey and Sons: New York, 2002. pp. 11-12.
  • [20] Chambell OE, Padilla-Zakour OI. Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of northeast USA apricot (Prunus armeniaca) varieties. Journal of Agricultural and Food Chemistry 2013; 61: 12700-12710.
  • [21] Sharoba AM, Ramadan MF. Rheological behavior and physicochemical characteristics of golden berry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservations 2011; 35: 201-209.
  • [22] Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in cape gooseberry (Physalis peruviana L.). Journal of Science Food Agriculture 2015; 95: 1562-1569.
  • [23] Rop O, Micek J, Jurikova T, Valsikova M. Bioactive content and antioxidant capacity of cape gooseberry fruit. Central European Journal of Biology 2012; 7: 872-879.
  • [24] Torres-Ossandóna MJ, Vega-Gálveza A, López J, Stuckena K, Romerod J, Di Scala K. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). The Journal of Supercritical Fluids 2018; 138: 215-220.
  • [25] Mphahlele RR, Stander MA, Fawole OA, Opara UL. Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Scientia Horticulturae, 2014; 179: 36-45.
  • [26] Olivares-Tenorio AL, Dekke M, Verkerk R. Health-promoting compounds in cape gooseberry (Physalis peruviana L): Review from a supply chain perspective. Trends in Food Science Technology 2016; 57: 83-92.
  • [27] Olivares-Tenerio ML, Verek R, Bookel MAJS, Dekker M. Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis Peruviana l.). Journal of Functional Foods 2017; 32: 46-57.
  • [28] Dragovic-uzelac V, Levaj B, Mrkic V, Bursac D, Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry 2007; 102: 966–975.
  • [29] Wang S, and Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural Food Chemistry 2000; 48:140-146.
  • [30] Dokoozlian NK, Kliwer WM. Influence of light on grape berry growth and composition varies during fruit development, Journal of American Society Science 1996; 121: 869-874.
  • [31] Kliewer WM. Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes, American Journal of Enolology Viticulture 1977; 28: 96:103.
  • [32] Fischer G, Ebert G. Production seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality 2007; 81: 29-35.
  • [33] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review 1992; 58: 107-185.
  • [34] Fischer G, Ebert G, Lüdders P. Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Production 2.Conferance Tropical Fruits 2000; 531: 263-267.
  • [35] Çağlar MY, Demirci M. Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi 2017; 7: 18-26.
  • [36] Vega-Galves A, Lopez J, Torres-Ossandon AJ, Jose Galatto M, Puente-Diaz L, Quispe-Fuentes I, Di Scala K. High hydrostatic pressure effect on chemical composition, color, phenolic acid and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology 2014; 58: 519-526.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Tuğça Bilenler 0000-0001-7831-6337

İhsan Karabulut 0000-0002-9014-8863

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 2

Kaynak Göster

APA Bilenler, T., & Karabulut, İ. (2019). FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 8(2), 218-228. https://doi.org/10.18036/estubtdc.598905
AMA Bilenler T, Karabulut İ. FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. Temmuz 2019;8(2):218-228. doi:10.18036/estubtdc.598905
Chicago Bilenler, Tuğça, ve İhsan Karabulut. “FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8, sy. 2 (Temmuz 2019): 218-28. https://doi.org/10.18036/estubtdc.598905.
EndNote Bilenler T, Karabulut İ (01 Temmuz 2019) FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8 2 218–228.
IEEE T. Bilenler ve İ. Karabulut, “FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 8, sy. 2, ss. 218–228, 2019, doi: 10.18036/estubtdc.598905.
ISNAD Bilenler, Tuğça - Karabulut, İhsan. “FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 8/2 (Temmuz 2019), 218-228. https://doi.org/10.18036/estubtdc.598905.
JAMA Bilenler T, Karabulut İ. FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2019;8:218–228.
MLA Bilenler, Tuğça ve İhsan Karabulut. “FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, c. 8, sy. 2, 2019, ss. 218-2, doi:10.18036/estubtdc.598905.
Vancouver Bilenler T, Karabulut İ. FARKLI OLGUNLUK AŞAMALARINDAKİ ALTIN ÇİLEĞİN (Physalıs peruvıana L.) BİLEŞİM ÖZELLİKLERİNİN BELİRLENMESİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2019;8(2):218-2.