Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Lineer Olmayan Schrodinger Denklemi İçin Septik B-spline Kolokasyon Metodu

Yıl 2023, Cilt: 4 Sayı: 2, 28 - 33, 30.06.2023
https://doi.org/10.53608/estudambilisim.1296980

Öz

Bu çalışma, genelleştirilmiş lineer olmayan Schordinger (GNLS) denkleminin yüksek doğruluklu sayısal çözümünü elde etmek içindir. Çalışmada iki farklı zaman parçalanması kullanılacaktır. İlk zaman parçalanması doğruluğu iki olan ve literatürde iyi bilinen Crank-Nicolson yöntemi, ikinci zaman parçalanması ise tek adımlı ve dördüncü mertebeden doğruluğa sahip yöntemdir. Zaman parçalanması için genel bir yöntem kullanıldıktan sonra konum parçalanması için ise septik B-spline fonksiyonların kullanıldığı kolokasyon yöntemi kullanılacaktır. Zaman ve konum parçalanması uygulandıktan sonra lineer olmayan bir denklem sistemi elde edilecektir. Denklem sistemi Matlab paket programı yardımıyla çözülürken öncelikle iç iterasyonlu bir lineerleştirme kullanılacak ve istenilen zaman kadarki çözümler iteratif olarak bulunacaktır Son olarak solitary dalgasının yayılımı test problemi kullanılarak önerilen metotlar test edilmiştir.

Kaynakça

  • Johnson, R.S., (1977), On the modulation of water waves in the neighbourhood of kh≈1.363, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 357(1689), 131-141.
  • Kakutani, T. and Michihiro, K., (1983), Marginal state of modulational instability-mode of Benjamin-Feir instability, Journal of Physical Society of Japan 52, 4129-4137.
  • Hasimoto, H. and Ono, H., (1972), Nonlinear modulation of gravity waves, Journal of Physical Society of Japan 33, 805-811.
  • Strauss, W.A., (1978), The non-linear Schrodinger equation, in Contemporary Developments in continuum Mechanics, edited by G. M. de la Penha and L. A. Medeiros, North-Holland, NewYork, 452 p.
  • Lamb, G.L., (1980), Elements of soliton theory, John Wiley and Sons, 304 p.
  • Pathria, D. and Morris, J.LI., (1990), Pseudospectral solution of nonlinear Schrödinger equation, Journal of Computational Physics 87, 108-125.
  • Muslu, G.M. and Erbay, H.A., (2005), Higherorder split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Mathematics and Computers in Simulation 67, 581-595.
  • Irk D. and Dağ İ. (2011), Quintic B-spline collocation method for the generalized nonlinear Schrödinger equation, Journal of the Franklin Institute, 358(2), 378-392.

Septic B-spline Collocation Method for Numerical Solution of the Generalized Nonlinear Schrodinger Equation

Yıl 2023, Cilt: 4 Sayı: 2, 28 - 33, 30.06.2023
https://doi.org/10.53608/estudambilisim.1296980

Öz

This study introduces to obtain high order accurate method for numerical solution of the generalized nonlinear Schrodinger (GNLS) equation. Two different time discretizations are used in the study. The first method is the well known Crank-Nicolson method with second order accuracy and the second method discretization is a one-step method with fourth order accuracy. After using a general method including two proposed time discretization methods for time discretization, the collocation method using septic B-spline functions will be used forspace discretization. A non-linear system of equations will be obtained after applying time and space disctretizations. While the equation system is being solved with the help of Matlab package program, firstly an inner iteration linearization will be used and the solutions up to the desired time will be found iteratively. Finally, the proposed methods are tested by using the solitary wave propagation test problem.

Kaynakça

  • Johnson, R.S., (1977), On the modulation of water waves in the neighbourhood of kh≈1.363, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 357(1689), 131-141.
  • Kakutani, T. and Michihiro, K., (1983), Marginal state of modulational instability-mode of Benjamin-Feir instability, Journal of Physical Society of Japan 52, 4129-4137.
  • Hasimoto, H. and Ono, H., (1972), Nonlinear modulation of gravity waves, Journal of Physical Society of Japan 33, 805-811.
  • Strauss, W.A., (1978), The non-linear Schrodinger equation, in Contemporary Developments in continuum Mechanics, edited by G. M. de la Penha and L. A. Medeiros, North-Holland, NewYork, 452 p.
  • Lamb, G.L., (1980), Elements of soliton theory, John Wiley and Sons, 304 p.
  • Pathria, D. and Morris, J.LI., (1990), Pseudospectral solution of nonlinear Schrödinger equation, Journal of Computational Physics 87, 108-125.
  • Muslu, G.M. and Erbay, H.A., (2005), Higherorder split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Mathematics and Computers in Simulation 67, 581-595.
  • Irk D. and Dağ İ. (2011), Quintic B-spline collocation method for the generalized nonlinear Schrödinger equation, Journal of the Franklin Institute, 358(2), 378-392.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri
Yazarlar

Buse Arıcan Bu kişi benim 0000-0001-8184-0930

Dursun Irk 0000-0002-3340-1578

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 14 Mayıs 2023
Kabul Tarihi 13 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

IEEE B. Arıcan ve D. Irk, “Genelleştirilmiş Lineer Olmayan Schrodinger Denklemi İçin Septik B-spline Kolokasyon Metodu”, ESTUDAM Bilişim, c. 4, sy. 2, ss. 28–33, 2023, doi: 10.53608/estudambilisim.1296980.

Dergimiz Index Copernicus, ASOS Indeks, Google Scholar ve ROAD indeks tarafından indekslenmektedir.