Research Article
BibTex RIS Cite
Year 2025, Volume: 11 Issue: 2, 279 - 288
https://doi.org/10.18621/eurj.1600293

Abstract

References

  • 1. Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108(11):2205-2240. doi: 10.1038/bjc.2013.177.
  • 2. Li X, Qin G, He Q, et al. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Eur Radiol. 2020;30(2):778-788. doi: 10.1007/s00330-019-06457-5.
  • 3. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238-250. doi: 10.1016/j.semcancer.2020.04.002.
  • 4. Hogg P, Kelly J, Mercer C. Digital Mammography: Springer; 2015.
  • 5. Wu M, Ma J. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer. Acad Radiol. 2017;24(4):426-434. doi: 10.1016/j.acra.2016.11.012.
  • 6. Senkus E, Kyriakides S, Penault-Llorca F, et al; ESMO Guidelines Working Group. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi7-23. doi: 10.1093/annonc/mdt284.
  • 7. Lin F, Wang Z, Zhang K, et al. Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for Identifying Benign and Malignant Breast Lesions of Sub-1 cm. Front Oncol. 2020;10:573630. doi: 10.3389/fonc.2020.573630.
  • 8. Pesapane F, Suter MB, Rotili A, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol. 2020;37(4):29. doi: 10.1007/s12032-020-01353-1.
  • 9. Watanabe AT, Lim V, Vu HX, et al. Improved Cancer Detection Using Artificial Intelligence: a Retrospective Evaluation of Missed Cancers on Mammography. J Digit Imaging. 2019;32(4):625-637. doi: 10.1007/s10278-019-00192-5.
  • 10. Dembrower K, Wåhlin E, Liu Y, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health. 2020;2(9):e468-e474. doi: 10.1016/S2589-7500(20)30185-0.
  • 11. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169(2):217-229. doi: 10.1007/s10549-018-4675-4.
  • 12. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-495. doi: 10.2967/jnumed.118.222893.
  • 13. WHO. World Health Organization classification of tumors 5th edition Breast Tumors. 2019:95-99.
  • 14. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097-105.
  • 15. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: p. 7263-7271.
  • 16. Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv:180903006. 2018.
  • 17. Warrens MJ. On the equivalence of Cohen’s kappa and the Hubert-Arabie adjusted Rand index. Journal of classification. 2008;25(2):177-183. doi: 10.1007/s00357-008-9023-7
  • 18. Pokorny T, Tesarik J. Microwave Stroke Detection and Classification Using Different Methods from MATLAB’s Classification Learner Toolbox. 2019 European Microwave Conference in Central Europe (EuMCE): IEEE; 2019. p. 500-3.
  • 19. Cui Y, Li Y, Xing D, Bai T, Dong J, Zhu J. Improving the Prediction of Benign or Malignant Breast Masses Using a Combination of Image Biomarkers and Clinical Parameters. Front Oncol. 2021;11:629321. doi: 10.3389/fonc.2021.629321. doi: 10.3389/fonc.2021.694094.
  • 20. Salim M, Dembrower K, Eklund M, Lindholm P, Strand F. Range of Radiologist Performance in a Population-based Screening Cohort of 1 Million Digital Mammography Examinations. Radiology. 2020;297(1):33-39. doi: 10.1148/radiol.2020192212.
  • 21. Pacilè S, Lopez J, Chone P, Bertinotti T, Grouin JM, Fillard P. Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiol Artif Intell. 2020;2(6):e190208. doi: 10.1148/ryai.2020190208.
  • 22. Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health. 2020;2(3):e138-e148. doi: 10.1016/S2589-7500(20)30003-0.
  • 23. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi: 10.1038/s41586-019-1799-6.

Differentiating types of breast cancer from digital mammography images with artificial intelligence methods

Year 2025, Volume: 11 Issue: 2, 279 - 288
https://doi.org/10.18621/eurj.1600293

Abstract

Objectives: Breast cancer (BCA) is one of the world’s most prevalent cancer and the top cause of mortality. For many decades, mammography has been used routinely for screening of early breast cancer and diagnosing symptomatic patients. The main purpose of this work is to investigate the usefulness of machine learning techniques using mammography images.

Methods: A total of 194 patients who underwent ultrasound examination after observing suspicious lesions on mammography images and were diagnosed with BCA by ultrasound-guided core needle biopsy were included in the study. A set of mammography images with complete cancer subtypes was used. A transfer learning-based computer vision method was adopted in this study. AlexNet was to extract the features and select the most significant features using a feature selection function. Our deep learning-based model attained more than 80% accuracy in classifying malignant and benign cancers. However, the employed deep learning model cannot classify subtypes accurately.

Results: Per the results, the commonly used image classification model is highly accurate in distinguishing malignant and benign changes, however unable to classify cancer subtypes.

Conclusions: In conclusion, machine learning can still not simulate conventional immunohistochemistry subtyping using tissue biopsy.

Ethical Statement

The study was approved by Adıyaman University Non-Interventional Clinical Research Ethics Committee (Date: 26.10.2021, number: 08).

References

  • 1. Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108(11):2205-2240. doi: 10.1038/bjc.2013.177.
  • 2. Li X, Qin G, He Q, et al. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Eur Radiol. 2020;30(2):778-788. doi: 10.1007/s00330-019-06457-5.
  • 3. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238-250. doi: 10.1016/j.semcancer.2020.04.002.
  • 4. Hogg P, Kelly J, Mercer C. Digital Mammography: Springer; 2015.
  • 5. Wu M, Ma J. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer. Acad Radiol. 2017;24(4):426-434. doi: 10.1016/j.acra.2016.11.012.
  • 6. Senkus E, Kyriakides S, Penault-Llorca F, et al; ESMO Guidelines Working Group. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi7-23. doi: 10.1093/annonc/mdt284.
  • 7. Lin F, Wang Z, Zhang K, et al. Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for Identifying Benign and Malignant Breast Lesions of Sub-1 cm. Front Oncol. 2020;10:573630. doi: 10.3389/fonc.2020.573630.
  • 8. Pesapane F, Suter MB, Rotili A, et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol. 2020;37(4):29. doi: 10.1007/s12032-020-01353-1.
  • 9. Watanabe AT, Lim V, Vu HX, et al. Improved Cancer Detection Using Artificial Intelligence: a Retrospective Evaluation of Missed Cancers on Mammography. J Digit Imaging. 2019;32(4):625-637. doi: 10.1007/s10278-019-00192-5.
  • 10. Dembrower K, Wåhlin E, Liu Y, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health. 2020;2(9):e468-e474. doi: 10.1016/S2589-7500(20)30185-0.
  • 11. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169(2):217-229. doi: 10.1007/s10549-018-4675-4.
  • 12. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-495. doi: 10.2967/jnumed.118.222893.
  • 13. WHO. World Health Organization classification of tumors 5th edition Breast Tumors. 2019:95-99.
  • 14. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097-105.
  • 15. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: p. 7263-7271.
  • 16. Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv:180903006. 2018.
  • 17. Warrens MJ. On the equivalence of Cohen’s kappa and the Hubert-Arabie adjusted Rand index. Journal of classification. 2008;25(2):177-183. doi: 10.1007/s00357-008-9023-7
  • 18. Pokorny T, Tesarik J. Microwave Stroke Detection and Classification Using Different Methods from MATLAB’s Classification Learner Toolbox. 2019 European Microwave Conference in Central Europe (EuMCE): IEEE; 2019. p. 500-3.
  • 19. Cui Y, Li Y, Xing D, Bai T, Dong J, Zhu J. Improving the Prediction of Benign or Malignant Breast Masses Using a Combination of Image Biomarkers and Clinical Parameters. Front Oncol. 2021;11:629321. doi: 10.3389/fonc.2021.629321. doi: 10.3389/fonc.2021.694094.
  • 20. Salim M, Dembrower K, Eklund M, Lindholm P, Strand F. Range of Radiologist Performance in a Population-based Screening Cohort of 1 Million Digital Mammography Examinations. Radiology. 2020;297(1):33-39. doi: 10.1148/radiol.2020192212.
  • 21. Pacilè S, Lopez J, Chone P, Bertinotti T, Grouin JM, Fillard P. Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiol Artif Intell. 2020;2(6):e190208. doi: 10.1148/ryai.2020190208.
  • 22. Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health. 2020;2(3):e138-e148. doi: 10.1016/S2589-7500(20)30003-0.
  • 23. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi: 10.1038/s41586-019-1799-6.
There are 23 citations in total.

Details

Primary Language English
Subjects Artificial Reality, Radiology and Organ Imaging
Journal Section Original Articles
Authors

Ela Kaplan 0000-0001-5039-9070

Orhan Yaman 0000-0001-9623-2284

Hacı Taner Bulut 0000-0002-7267-4253

Mehmet Şirik 0000-0002-5543-3634

Türker Tuncer 0000-0002-5126-6445

Şengül Doğan 0000-0001-9677-5684

Early Pub Date February 10, 2025
Publication Date
Submission Date December 12, 2024
Acceptance Date December 28, 2024
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

AMA Kaplan E, Yaman O, Bulut HT, Şirik M, Tuncer T, Doğan Ş. Differentiating types of breast cancer from digital mammography images with artificial intelligence methods. Eur Res J. 11(2):279-288. doi:10.18621/eurj.1600293

e-ISSN: 2149-3189 


The European Research Journal, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

by-nc-nd.png

2025