Araştırma Makalesi
BibTex RIS Kaynak Göster

Laktik asit bakterilerinden elde edilen konsantre postbiyotiklerin bazı gıda patojenleri üzerine etkilerinin değerlendirilmesi

Yıl 2024, , 77 - 86, 04.07.2024
https://doi.org/10.35864/evmd.1446863

Öz

Çalışmada dokuz farklı laktik asit bakterisi MRS Broth’da 24, 48 ve 96 saat inkübe edildikten sonra postbiyotikleri elde edildi. Elde edilen postbiyotiklerin (1x) suyu evaporasyonla uçurularak iki (2x) ve dört (4x) kat yoğunlaştırıldı. Farklı inkübasyon sürelerinde elde edilen ve farklı yoğunluktaki postbiyotiklerin pH değerleri, titre edilebilir organik asit miktarları ve Salmonella spp., Listeria monocytogenes, Escherichia coli O157, metisilin dirençli Stapylococcus aureus ve Brucellla melitensis üzerine antimikrobiyal etkileri agar difüzyon yöntemi ile inhibisyon zon çapları ölçülerek ortaya konuldu. Çalışmada laktik asit bakterilerinin inkübasyon sürelerindeki artışın postbiyotiklerindeki pH değerleri, titre edilebilir asit miktarları ve patojenler üzerine antimikrobiyal etkide önemli bir değişikliğe neden olmadığı görüldü (p>0.05). Postbiyotikler 2x ve 4x yoğunlaştırıldıklarında, içerdikleri organik asit miktarları artmasına ve patojenler üzerine daha güçlü bir antimikrobiyal etki göstermelerine rağmen (p<0.05), pH değerlerinde önemli bir değişiklik görülmedi (p>0.05). Postbiyotiklerin antimikrobiyal etkilerini içerdikleri organik asitler ile meydana getirdikleri, organik asitlerin ise NaOH ile nötralize edildiklerinde antimikrobiyal etkilerinin kaybolduğu tespit edildi. En yüksek titre edilebilir asit miktarları ve patojenlere karşı en güçlü antimikrobiyal etkiler ise Lactobacillus plantarum, L. sakei ve L. curvatus’dan elde edilen postbiyotiklerde görüldü (p<0.05).

Destekleyen Kurum

Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

2021-129

Kaynakça

  • Aghebati-Maleki L, Hasannezhad P, Abbasi A, Khani, N. (2022) Antibacterial, Antiviral, Antioxidant, and Anticancer Activities of Postbiotics: A review of Mechanisms and Therapeutic Perspectives. Biointerface Res Appl Chem. 12, 2, 2629-2645. https://doi.org/10.33263/BRIAC122.26292645
  • Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. (2018) Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol. 75, 105-114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D. (2016) Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol. 7. https://doi.org/10.3389/fmicb.2016.00464
  • Balthazar CF, Guimarães JF, Coutinho NM, Pimentel TC, Ranadheera CS, Santillo A, Albenzio M, Cruz AG, Sant'Ana AS. (2022) The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Compr Rev Food Sci Food Saf. 21, 3, 2560-2586. https://doi.org/10.1111/1541-4337.12962
  • Barros CP, Guimarães JT, Esmerino EA, Duarte MCKH, Silva MC, Silva R, Ferreira BM, Sant’Ana AS, Freitas MQ, Cruz AG. (2020) Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci. 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003.
  • El-Khawas KM, Elbauomy EM. (2015) Control of Brucella Organisms During Manufacturing of Acid Cheese Using Some Organic Acids. Assiut Vet Med J. 61, 147, 73-79. https://doi.org/10.21608/avmj.2015.170238
  • De Angelis M, Gobbetti M. (2011) Lactic Acid bacteria – Lactobacillus spp.: General Characteristics. Encyclopedia of Dairy Sciences. 2nd Edition, p.78–90. https://doi.org/10.1016/B978-0-08-100596-5.00851-9
  • Divyashree S, Anjali PG, Somashekaraiah R, Sreenivasa MY. (2021) Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672
  • García-Díez J, Saraiva C. (2021) Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int J Environ Res Public Health. 18, 2544. https://doi.org/10.3390/ijerph18052544
  • Gökırmaklı Ç, Üçgül B, Güzel-Seydim ZB. (2021) A new insight of the functional food concept: Postbiotics. GIDA. 46, 4, 872-882. https://doi.org/10.15237/gida.GD21035
  • Gunkova PI, Buchilina AS, Maksimiuk NN, Bazarnova YG, Girel KS. (2021) Carbohydrate Fermentation Test of Lactic Acid Starter Cultures. IOP Conf Ser Earth Environ Sci. 852, 012035. https://doi.org/10.1088/1755-1315/852/1/012035
  • Habeeb GA, Durmuşoğlu H, İlhak Oİ. (2021) The combined effect of sodium lactate, lactic acid and acetic acid on the survival of Salmonella spp. and the microbiota of chicken drumsticks. Slov Vet Res. 58, 2, 47-54. https://doi.org/10.26873/SVR-955-2020
  • İncili GK, Karatepe P, Akgöl M, Güngören A, Koluman A, İlhak Oİ, Kanmaz H, Kaya B, Hayaloğlu AA. (2022a) Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol. 104, 104001. https://doi.org/10.1016/j.fm.2022.104001
  • İncili GK, Karatepe P, Akgöl M, Tekin A, Kanmaz H, Kaya B, Çalıcıoğlu M, Hayaloğlu AA. (2022b) Impact of chitosan embedded with postbiotics from Pediococcus acidilactici against emerging foodborne pathogens in vacuum-packaged frankfurters during refrigerated storage. Meat Sci. 188, 108786. https://doi.org/10.1016/j.meatsci.2022.108786
  • İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. (2021) Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol. 184, 429-437. https://doi.org/10.1016/j.ijbiomac.2021.06.106
  • İncili GK, Akgöl M, Karatepe P, Kanmaz H, kaya B, Tekin A, Hayaloğlu AA. (2023) Inhibitory effect of bioactive compounds derived from freeze-dried paraprobiotic of Pediococcus acidilactici against food-borne pathogens: In-vitro and food model studies. Food Research International, 170, 113045, https://doi.org/10.1016/j.foodres.2023.113045
  • Jansen W, Linard C, Noll M, Nöckler K, Dahouk SA. (2019) Brucella-positive raw milk cheese sold on the inner European market: A public health threat due to illegal import? Food Control. 100, 130-137. https://doi.org/10.1016/j.foodcont.2019.01.022
  • Jo D-M, Park S-K, Khan F, Kang M-G, Lee J-H, Kim Y-M. (2020) An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control. 107731. https://doi.org/10.1016/j.foodcont.2020.107731
  • Mani-López E, García H, López-Malo A. (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int. 45, 713-721. https://doi.org/10.1016/j.foodres.2011.04.043.
  • Mani-López E, Arrioja-Bretón D, López-Malo A. (2022) The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf. 21, 604-641. https://doi.org/10.1111/1541-4337.12872
  • Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. (2020) Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf. 19, 3390-3415. https://doi.org/10.1111/1541-4337.12613.
  • Moradi, M, Molaei R, Guimaraes JT. (2021) A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb Technol. 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Mun SY, Kim SK, Woo ER, Chang HC. (2019) Purification and characterization of an antimicrobial compound produced by Lactobacillus plantarum EM showing both antifungal and antibacterial activities. LWT - Food Sci Technol. 108403. https://doi.org/10.1016/j.lwt.2019.108403
  • Nasrollahzadeh A, Mokhtari S, Khomeiri M, Saris PEJ. (2022) Antifungal Preservation of Food by Lactic Acid Bacteria. Foods, 11, 395. https://doi.org/10.3390/foods11030395
  • O’Connor PM, Kuniyoshi TM, Oliveira RP, Hill C, Ross RP, Cotter PD. (2020) Antimicrobials for food and feed; a bacteriocin perspective. Curr Opin Biotechnol. 61, 160-167. https://doi.org/10.1016/j.copbio.2019.12.023
  • Özçelik S, Kuley E, Özogul F. (2016) Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT-Food Sci Technol. 73, 536-542. http://dx.doi.org/10.1016/j.lwt.2016.06.066
  • Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. (2021) Postbiotics: A novel strategy in food allergy treatment. Crit Rev Food Sci Nutr. 61, 3, 492-499. https://doi.org/10.1080/10408398.2020.1738333
  • Sabahi S, Rad AH, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. (2022) Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr. 63, 26, 8375-8402. https://doi.org/10.1080/10408398.2022.2056727Salantǎ LC, Cropotova J. (2022) An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants. 11, 2488. https://doi.org/10.3390/plants11192488
  • Serter B, Önen A, İlhak Oİ. (2024) Antimicrobial efficacy of postbiotics of lactic acid bacteria and their effects on food safety and shelf life of chicken meat. Ann. Anim. Sci. 24, 1, 277-287. https://doi.org/10.2478/aoas-2023-0081
  • Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. (2022) Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods. 11, 3094. https://doi.org/10.3390/foods11193094
  • Tyl C, Sadler GD. (2017) pH and Titratable Acidity. In: Nielsen, SS. (eds) Food Analysis. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-319-45776-5_22
  • Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. (2019) Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 20, 4673. https://doi.org/10.3390/ijms20194673
  • Yolmeh M, Khomeiri M, Ahmadi Z. (2017) Application of mixture design to introduce an optimum cell-free supernatant of multiple-strain mixture (MSM) for Lactobacillus against food-borne pathogens. LWT- Food Sci Technol. 83, 298-304. https://doi.org/10.1016/j.lwt.2017.05.035
  • Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A. (2010) Production of organic acids by Lactobacillus strains in three different media. Eur Food Res Technol. 230, 3, 395-404. https://doi.org/10.1007/s00217-009-1179-9
  • Zhou K, Zeng Y, Han X, Liu S. (2015) Modelling growth and bacteriocin production by Lactobacillus plantarum BC-25 in response to temperature and pH in batch fermentation. Appl Biochem Biotechnol. 176, 6, 1627-1637. https://doi.org/10.1007/s12010-015-1666-3

Evaluation of the effects of concentrated postbiotics from lactic acid bacteria on some food pathogens

Yıl 2024, , 77 - 86, 04.07.2024
https://doi.org/10.35864/evmd.1446863

Öz

In the study, nine different lactic acid bacteria were incubated in MRS Broth for 24, 48 and 96 hours and their postbiotics were obtained. The water of the obtained postbiotics (x) was evaporated and concentrated two (2x) and four (4x) times. The pH values and titratable organic acid amounts of postbiotics obtained at different incubation times and at different concentrations were determined, and their antimicrobial effects on Salmonella spp., Listeria monocytogenes, Escherichia coli O157, methicillin resistant Stapylococcus aureus and Brucellla melitensis were determined by measuring the inhibition zone diameters with agar diffusion method. In the study, it was detected that the increase in the incubation period of lactic acid bacteria did not cause a significant change in the pH values, titratable acid content and antimicrobial effect on pathogens (p>0.05). When postbiotics were concentrated 2x and 4x, the amount of organic acids they contained increased (p<0.05) and they showed a stronger antimicrobial effect on pathogens (p<0.05), but there was no significant change in their pH values (p>0.05). It was determined that the postbiotics showed their antimicrobial effects through the organic acids which they produced, and when the organic acids were neutralized with NaOH, their antimicrobial effects disappeared. The highest titratable acid amounts and the strongest antimicrobial effects against pathogens were observed in postbiotics obtained from L. plantarum, L. sakei and L. curvatus (p<0.05).

Proje Numarası

2021-129

Kaynakça

  • Aghebati-Maleki L, Hasannezhad P, Abbasi A, Khani, N. (2022) Antibacterial, Antiviral, Antioxidant, and Anticancer Activities of Postbiotics: A review of Mechanisms and Therapeutic Perspectives. Biointerface Res Appl Chem. 12, 2, 2629-2645. https://doi.org/10.33263/BRIAC122.26292645
  • Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. (2018) Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol. 75, 105-114. https://doi.org/10.1016/j.tifs.2018.03.009
  • Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D. (2016) Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol. 7. https://doi.org/10.3389/fmicb.2016.00464
  • Balthazar CF, Guimarães JF, Coutinho NM, Pimentel TC, Ranadheera CS, Santillo A, Albenzio M, Cruz AG, Sant'Ana AS. (2022) The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Compr Rev Food Sci Food Saf. 21, 3, 2560-2586. https://doi.org/10.1111/1541-4337.12962
  • Barros CP, Guimarães JT, Esmerino EA, Duarte MCKH, Silva MC, Silva R, Ferreira BM, Sant’Ana AS, Freitas MQ, Cruz AG. (2020) Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci. 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003.
  • El-Khawas KM, Elbauomy EM. (2015) Control of Brucella Organisms During Manufacturing of Acid Cheese Using Some Organic Acids. Assiut Vet Med J. 61, 147, 73-79. https://doi.org/10.21608/avmj.2015.170238
  • De Angelis M, Gobbetti M. (2011) Lactic Acid bacteria – Lactobacillus spp.: General Characteristics. Encyclopedia of Dairy Sciences. 2nd Edition, p.78–90. https://doi.org/10.1016/B978-0-08-100596-5.00851-9
  • Divyashree S, Anjali PG, Somashekaraiah R, Sreenivasa MY. (2021) Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672
  • García-Díez J, Saraiva C. (2021) Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int J Environ Res Public Health. 18, 2544. https://doi.org/10.3390/ijerph18052544
  • Gökırmaklı Ç, Üçgül B, Güzel-Seydim ZB. (2021) A new insight of the functional food concept: Postbiotics. GIDA. 46, 4, 872-882. https://doi.org/10.15237/gida.GD21035
  • Gunkova PI, Buchilina AS, Maksimiuk NN, Bazarnova YG, Girel KS. (2021) Carbohydrate Fermentation Test of Lactic Acid Starter Cultures. IOP Conf Ser Earth Environ Sci. 852, 012035. https://doi.org/10.1088/1755-1315/852/1/012035
  • Habeeb GA, Durmuşoğlu H, İlhak Oİ. (2021) The combined effect of sodium lactate, lactic acid and acetic acid on the survival of Salmonella spp. and the microbiota of chicken drumsticks. Slov Vet Res. 58, 2, 47-54. https://doi.org/10.26873/SVR-955-2020
  • İncili GK, Karatepe P, Akgöl M, Güngören A, Koluman A, İlhak Oİ, Kanmaz H, Kaya B, Hayaloğlu AA. (2022a) Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol. 104, 104001. https://doi.org/10.1016/j.fm.2022.104001
  • İncili GK, Karatepe P, Akgöl M, Tekin A, Kanmaz H, Kaya B, Çalıcıoğlu M, Hayaloğlu AA. (2022b) Impact of chitosan embedded with postbiotics from Pediococcus acidilactici against emerging foodborne pathogens in vacuum-packaged frankfurters during refrigerated storage. Meat Sci. 188, 108786. https://doi.org/10.1016/j.meatsci.2022.108786
  • İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. (2021) Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol. 184, 429-437. https://doi.org/10.1016/j.ijbiomac.2021.06.106
  • İncili GK, Akgöl M, Karatepe P, Kanmaz H, kaya B, Tekin A, Hayaloğlu AA. (2023) Inhibitory effect of bioactive compounds derived from freeze-dried paraprobiotic of Pediococcus acidilactici against food-borne pathogens: In-vitro and food model studies. Food Research International, 170, 113045, https://doi.org/10.1016/j.foodres.2023.113045
  • Jansen W, Linard C, Noll M, Nöckler K, Dahouk SA. (2019) Brucella-positive raw milk cheese sold on the inner European market: A public health threat due to illegal import? Food Control. 100, 130-137. https://doi.org/10.1016/j.foodcont.2019.01.022
  • Jo D-M, Park S-K, Khan F, Kang M-G, Lee J-H, Kim Y-M. (2020) An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control. 107731. https://doi.org/10.1016/j.foodcont.2020.107731
  • Mani-López E, García H, López-Malo A. (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int. 45, 713-721. https://doi.org/10.1016/j.foodres.2011.04.043.
  • Mani-López E, Arrioja-Bretón D, López-Malo A. (2022) The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf. 21, 604-641. https://doi.org/10.1111/1541-4337.12872
  • Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. (2020) Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf. 19, 3390-3415. https://doi.org/10.1111/1541-4337.12613.
  • Moradi, M, Molaei R, Guimaraes JT. (2021) A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb Technol. 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722
  • Mun SY, Kim SK, Woo ER, Chang HC. (2019) Purification and characterization of an antimicrobial compound produced by Lactobacillus plantarum EM showing both antifungal and antibacterial activities. LWT - Food Sci Technol. 108403. https://doi.org/10.1016/j.lwt.2019.108403
  • Nasrollahzadeh A, Mokhtari S, Khomeiri M, Saris PEJ. (2022) Antifungal Preservation of Food by Lactic Acid Bacteria. Foods, 11, 395. https://doi.org/10.3390/foods11030395
  • O’Connor PM, Kuniyoshi TM, Oliveira RP, Hill C, Ross RP, Cotter PD. (2020) Antimicrobials for food and feed; a bacteriocin perspective. Curr Opin Biotechnol. 61, 160-167. https://doi.org/10.1016/j.copbio.2019.12.023
  • Özçelik S, Kuley E, Özogul F. (2016) Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT-Food Sci Technol. 73, 536-542. http://dx.doi.org/10.1016/j.lwt.2016.06.066
  • Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. (2021) Postbiotics: A novel strategy in food allergy treatment. Crit Rev Food Sci Nutr. 61, 3, 492-499. https://doi.org/10.1080/10408398.2020.1738333
  • Sabahi S, Rad AH, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. (2022) Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr. 63, 26, 8375-8402. https://doi.org/10.1080/10408398.2022.2056727Salantǎ LC, Cropotova J. (2022) An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants. 11, 2488. https://doi.org/10.3390/plants11192488
  • Serter B, Önen A, İlhak Oİ. (2024) Antimicrobial efficacy of postbiotics of lactic acid bacteria and their effects on food safety and shelf life of chicken meat. Ann. Anim. Sci. 24, 1, 277-287. https://doi.org/10.2478/aoas-2023-0081
  • Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. (2022) Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods. 11, 3094. https://doi.org/10.3390/foods11193094
  • Tyl C, Sadler GD. (2017) pH and Titratable Acidity. In: Nielsen, SS. (eds) Food Analysis. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-319-45776-5_22
  • Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. (2019) Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 20, 4673. https://doi.org/10.3390/ijms20194673
  • Yolmeh M, Khomeiri M, Ahmadi Z. (2017) Application of mixture design to introduce an optimum cell-free supernatant of multiple-strain mixture (MSM) for Lactobacillus against food-borne pathogens. LWT- Food Sci Technol. 83, 298-304. https://doi.org/10.1016/j.lwt.2017.05.035
  • Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A. (2010) Production of organic acids by Lactobacillus strains in three different media. Eur Food Res Technol. 230, 3, 395-404. https://doi.org/10.1007/s00217-009-1179-9
  • Zhou K, Zeng Y, Han X, Liu S. (2015) Modelling growth and bacteriocin production by Lactobacillus plantarum BC-25 in response to temperature and pH in batch fermentation. Appl Biochem Biotechnol. 176, 6, 1627-1637. https://doi.org/10.1007/s12010-015-1666-3
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mikrobiyolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Nisanur Ektik Sezen 0000-0001-9389-4362

Tevhide Elif Güner 0000-0002-8706-1417

Hakan Tavşanlı 0000-0002-5124-3702

Osman İrfan İlhak 0000-0002-1769-6249

Proje Numarası 2021-129
Yayımlanma Tarihi 4 Temmuz 2024
Gönderilme Tarihi 7 Mart 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ektik Sezen, N., Güner, T. E., Tavşanlı, H., İlhak, O. İ. (2024). Laktik asit bakterilerinden elde edilen konsantre postbiyotiklerin bazı gıda patojenleri üzerine etkilerinin değerlendirilmesi. Etlik Veteriner Mikrobiyoloji Dergisi, 35(1), 77-86. https://doi.org/10.35864/evmd.1446863


15430