Araştırma Makalesi
BibTex RIS Kaynak Göster

Gamitromisin ve Tulatromisinin Sığır Trakea Düz Kası Üzerine Etkileri

Yıl 2020, Cilt: 31 Sayı: 2, 140 - 146, 31.12.2020
https://doi.org/10.35864/evmd.762503

Öz

Bu çalışmada; sığır solunum yolu hastalıklarında yaygın olarak kullanılan gamitromisin ve tulatromisinin, erkek Simental ırkı sığır trakea düz kası üzerine etkilerinin izole organ banyosunda araştırılması ve bu iki makrolid antibiyotiğin etkilerinin karşılaştırılması amaçlandı. İlk protokolde gamitromisin ve tulatromisin 10-7- 3×10-5 M derişimlerinde tek başına, trakea düz kası üzerine etkisiz olduğu bulundu. İkinci protokolde; 20 dakika 3×10-5 M gamitromisin veya tulatromisin ile inkübe edilen trakea düz kası üzerine kümülatif ACh (10-8-10-3 M) derişimleri uygulandı, elde edilen pD2 ve Emax değerleri arasında fark bulunamadı. Üçüncü protokolde; 65mM KCl ile ön kasılma oluşturulan trakea düz kası üzerine uygulanan gamitromisin ve tulatromisin (10-10-10-5 M) derişimlerinde bir fark bulunamadı. Asetilkolin EC85 ( 2,3×10-4 M) değeriyle ön kasılma oluşturulan trakea düz kası üzerine gamitromisin ve tulatromisinin etkilerinin araştırıldığı dördüncü protokolde; tulatromisinin (10-10-10-5 M) derişimlerinde kasılma veya gevşeme yanıtı oluşmadı. Buna karşın gamitromisinin 10-7 M (%5.45±1.13) ve 10-6 M (%8.51±1.69) derişimlerinde, kontrole göre istatistiksel olarak gevşeme cevapları tespit edildi (p<0.05). Dördüncü protokol sonucu yapılan son protokolde; gamitromisinin 10-6 M derişiminin inkübasyonunda; asetilkolin cevaplarının Emax değeri sayısal olarak azalmıştır. Sonuç olarak derişime bağlı şekilde gamitromisin; ACh ile ön kasılma oluşturulan dokularda az da olsa gevşeme etkisi göstermiş olup, bu etki özellikle astım ya da solunum yolunda ödemle seyreden hastalıklarda tedaviye katkı sağlayabilir.

Destekleyen Kurum

Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2018/047

Kaynakça

  • An SS, Bai TR, Bates JHT, Black JL, Brown RH, Brusasco V, Chitano P, et. al. (2007) Airway smooth muscle Dynamics: a common pathway of airway obstruction in asthma. Eur Respir J. 29, 834-860.
  • Anadón A, Reeve-Johnson L (1999) Macrolide antibiotics, drug interactions and microsomal enzymes: implications for veterinary medicine. Research in Veterinary Science. 66, 197-203.
  • Bambeke FV, Tulkens PM. (2001) Macrolides: pharmacokinetics and pharmacodynamics. International Journal of Antimicrobial Agents. 18, 17-23.
  • Barnes PJ. (1989) Airway reseptors. Postgraduate Medical Journal. 65, 532-542.
  • Canning BJ, Fischer A. (2001) Neural regulation of airway smooth muscle tone. Respiration Physiology. 125, 113-127.
  • Carbon C. (1998) Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clinical Infectious Diseases. 27, 28-32.
  • Daenas C, Hatziefthimiou AA, Gourgoulianis KI, Molyvda PA. (2006) Azithromycin has a direct relaxant effect on precontracted airway smooth muscle. European Journal of Pharmacology. 553, 280-287.
  • Dai JM, Kuo K-H, Leo JM, Breemen CV, Lee C-H. (2005) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol. 290, 459-469.
  • Dinos GP. (2017) The macrolide antibiotic renaissance. British Journal of Pharmacology. 174,2967-2983.
  • Evans NA. (2005) Tulathromycin: an overview of a new triamilide antimicrobial for livestock respiratory disease. Veterinary Therapeutics. 6(2), 83-95.
  • Giguère S. (2013) Macrolides, azalides, and ketolides. Giguére S, Prescott JF, Dowling PM, eds. Antimicrobial Therapy in Veterinary Medicine. Fifth edition, Wiley Blackwell, Lowa, p:211-231.
  • Huang RA, Letendre LT, Banav N, Fischer J, Somerville B. (2009) Pharmacokinetics of gamithromycin in cattle with comparison of plasma and lung tissue concentrations and plasma antibacterial activity. J Vet Pharmacol Therap. 33, 227-237.
  • Itoh Z, Suzuki T, Nakaya M, Inoue M, Arai H, Wakabayashi K. (1985) Structure-activity relation among macrolide antibiotics in initiation of interdigestive migrating contractions in the canine gastrointestinal tract. American Journal of Physiology-Gastrointestinal and Liver Physiology. 248(3), G320-G325.
  • Jones KA, Housmans PR, Warner DO, Lorenz RR, Rehder K. (1993) Halothane alters cytosolic calcium transient in tracheal smooth muscle. Am. J. Physiol. 265, 80-86.
  • Kaneda T, Kanda H, Tajima T, Urakawa N, Shimizu K. (2018) Imidazole-induced contraction in bovine tracheal smooth muscle are not dependent on the cAMP pathway. J Vet Med Sci. 80(2), 341-345.
  • Kaneda T, Sakaguchi R, Shimizu K, Urakawa N, Nakajyo S. (2006) Effects of high-K+, Na+-deficient solution on contractility of the smooth muscles of the bovine trachea. J Vet Med Sci. 68(10), 1039-1045.
  • Kaneda T, Takeuchi Y, Matsui H, Shimizu K, Urakawa N, Nakjyo S. (2005) Inhibitory mechanism of papaverine on carbachol-induced contraction in bovine trachea. J Pharmacol Sci. 98, 275-282.
  • Kannan K, Mankin AS. (2011) Makrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann. N. Y.Acad. Sci. 1241, 33-47.
  • Kellermann M, Huang RA, Forbes AB, Rehbein S. (2014) Gamithromycin plasma and skin pharmacokinetics in sheep. Research in Veterinary Science. 97, 199-203.
  • Lechtenberg KF, Daniels CS, Schieber T, Bechtol DT, Drag M, Kunkle BN, Chester ST, Tessman RK. (2011) Field efficacy study of gamithromycin for the treatment of bovine respiratory disease associated with Mycoplasma bovis in beef and non-lactating dairy cattle. Intern J Appl Res Vet Med. 9(3), 225-232.
  • Maletić J, Djelić N, Radaković M, Maletić M, Lakić N, Kukolj V, Aleksić N, Andjelković M, Stanimirovıć Z. (2015) Evaluation of DNA damage in rat lymphocytes exposed to tulathromycin in vitro. Genetica. 47(1), 339-348.
  • Mehrdad NG, Yagoob A, Saeid S, Sina S. (2011) Effects of tulathromycin (Draxxin) on contractility of isokated myometrium in rats. Middle East Journal of Scientific Research. 10(4), 496-500.
  • Panettieri RA, Kotlikoff MI, Gerthoffer WT, Hershenson MB, Woodruff PG, Hall IP, Banks-Schlegel S. (2008) Airway smooth muscle in bronchial tone, inflammation, and remodeling. Am J Respir Crit Care Med. 177, 248-252.
  • Pyörälä S, Baptiste KE, Catry B, Dujkeren EV, Greko C, Moreno MA, Pomba MCMF, Rantala M, Ružauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K. (2014) Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance. The Veterinary Journal, 200, 230-239.
  • Sanderson MJ, Demoltte P, Bai Y, Perez-Zogbhi JF. (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc. 5, 23-31.
  • Sgoifo RCA, Vandoni SL, Bonfanti M, Forbes AB. (2010) Effects of arrival medication with gamithromycin on bovine respiratory disease in feedlot cattle in İtaly. Intern J Appl Res Vet Med. 8(2), 87-96.
  • Steel HC, Theron AJ, Cockeran R, Anderson R, Feldman C. (2012) Pathogen- and host- directed anti-inflammatory activities of macrolide antibiotics. Mediators of Inflammation. ID 584262. doi:10.1155/2012/584262.
  • Tamaoki J, Tagaya E, Sakaı A, Konno K. (1995) Effects of macrolide antibiotics on neurally mediated contraction of human isolated bronchus. J Allergy Clin Immunol. 95(4), 853-859.
  • Trak T, Yıldırım E, Yurdakök Dikmen B. (2019) The effect of gamithromycin on smooth muscle of rat uterus in vitro. IJVAR. 2(2), 46-50.
  • Wang IY, Bai Y, Sanderson MJ, Sneyd J. (2010) A mathematical analysis of agonist- and KCl-induced Ca2+oscillations in mouse airway smooth muscle cells. Biophysical Journal. 98, 1170-1181.
  • Wang Q, Yu M-F, Zhang W-J, Liu B-B, Zhao Q-Y, Luo X, Xu H, et. al. (2019) Azithromycin inhibits muscarinic 2 receptor-activated and voltage-activated Ca2+ permeant ion channels Ca2+ and sensitization, relaxing airway smooth muscle contraction. Clin Exp Pharmacol Physiol. 46, 329-336.
  • Wang X, Tao YF, Huang LL, Chen DM, Yin SZ, Ihsan A, Zhou W, Su SJ, Liu ZL, Pan YH, Yuan ZH. (2011) Pharmacokinetics of tulathromycin and its metabolite in swine administered with an intravenous bolus injection and a single gavage. J. Vet. Pharmacol. Therap. 35, 282-289.
  • Zholos AV, Bolton TB, Dresvyannikov AV, Kustov MV, Tsvilovskii VV, Shuba MF. (2004) Cholinergic excitation of smooth muscles: multiple signaling pathways linking M2 and M3 muscarinic receptors to cationic channels. Neurophysiology. 36(5/6), 398-406.
  • Zuckerman JM, Qamar F, Bono BR. (2011) Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin ) and glycylcyclines (tigecycline). Med Clin N Am. 95, 761–791.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Yaşar Şahin 0000-0001-5936-4210

Ebru Yıldırım 0000-0002-6289-0729

Begüm Yurdakök Dikmen 0000-0002-0385-3602

Proje Numarası 2018/047
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 1 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 31 Sayı: 2

Kaynak Göster

APA Şahin, Y., Yıldırım, E., & Yurdakök Dikmen, B. (2020). Gamitromisin ve Tulatromisinin Sığır Trakea Düz Kası Üzerine Etkileri. Etlik Veteriner Mikrobiyoloji Dergisi, 31(2), 140-146. https://doi.org/10.35864/evmd.762503


15430