Araştırma Makalesi
BibTex RIS Kaynak Göster

Do Norepinephrine and Estradiol Affect the Growth of Escherichia coli and Expressions of MarGenes?

Yıl 2021, Cilt: 11 Sayı: 3, 200 - 206, 08.12.2021
https://doi.org/10.26650/experimed.2021.989918

Öz

Objective: Human hormones have been shown to regulate antibi-otic resistance levels, pathogenicity, and growth of bacteria. In our study, we aimed to detect the possible effects of norepinephrine (NE) and estradiol (Est) on growth and expression of chromosomal multiple antibiotic resistance (mar) locus and related genes (ompF, marA, tolC, acrA, marR and acrB) in Escherichia (E) coli SPC105.

Material and Method: Serum supplemented SAPI (control) and serum SAPI containing norepinephrine (0.0017 μg/mL, 0.04 μg/mL, and 100 μg/mL) and estradiol (0.4 ng/mL, 3 ng/mL, 300 ng/mL) was used to grow E. coli SPC105. Growth alterations were deter-mined using the turbidimetric method while the gene expression levels were examined by quantitative polymerase chain reaction (qPCR).

Results: It was shown that, NE and Est in all concentrations were shown to affect (reduce/enhance due to incubation periods or hormone concentrations) the growth of E. coli SPC105 apart from the high-level Est concentration. Expression levels of all six target genes were shown to be significantly enhanced in the presence of all concentrations of both NE and Est.

Conclusion: Our results constitute new data on the possible influ-ences of these hormones on the growth and expressions of mar operon on transcriptional levels in the E. coli SPC105 strain.

Kaynakça

  • 1. Lyte M, Freestone PP. Microbial Endocrinology: Inter kingdom sig-naling in Infectious Disease and Health. New York: Springer; 2010. [CrossRef] google scholar
  • 2. LeRoith D, Shiloach J, Roth J, Lesniak MA. Insulin or a closely re-lated molecule is native to Escherichia coli. Journal of Biological Chemistry 1981; 256(13): 6533-6. [CrossRef] google scholar
  • 3. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Mi-crobiol 2001; 55: 165-99. [CrossRef] google scholar
  • 4. Plotkin BJ, Viselli SM. Effect of insulin on microbial growth. Curr Microbiol 2000; 41: 60-4. [CrossRef] google scholar
  • 5. Kornman KS, Loesche WJ. Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect and Immun 1982; 35(1): 256-63. [CrossRef] google scholar
  • 6. Delcenserie V, LaPointe G, Charaslertrangsi T, Rabalski A, Griffiths MW. Glucose decreases virulence gene expression of Escherichia coli O157: H7. J Food Protect 2012; 75(4): 748-52. [CrossRef] google scholar
  • 7. Ruiz C, Levy SB. Many chromosomal genes modulate MarA-me-diated multidrug resistance in Escherichia coli. Antimicrobiol Agents Chemother 2010; 54(5): 2125-34. [CrossRef] google scholar
  • 8. Randall LP, Woodward MJ. The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci 2002; 72: 87-93. [CrossRef] google scholar
  • 9. Kunonga NI, Sobieski RJ, Crupper SS. Prevalence of the multiple antibiotic resistance operon (marRAB) in the genus Salmonella. FEMS Microbiol Lett 2000; 187(2): 155-60. [CrossRef] google scholar
  • 10. Vinue L, McMurry LM, Levy SB. The 216-bp marB gene of the mar-RAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 2013; 345(1): 49-55. [CrossRef] google scholar
  • 11. Weston N, Sharma P, Ricci V, Piddock LJ. Regulation of the Acr-AB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2018; 169(7-8): 425-31. [CrossRef] google scholar
  • 12. Alekshun MN. Levy SB. The mar regulon: multiple resistances to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7(10): 410-13. [CrossRef] google scholar
  • 13. Alekshun MN, Levy SB. The Escherichia coli mar locus-Antibiotic resistance and more. ASM News 2004; 70(10): 451-56. google scholar
  • 14. Lankester A, Ahmed S, Lamberte LE, Kettles RA, Grainger DC. The Escherichia coli multiple antibiotic resistance activator protein re-presses transcription of the lac operon. Biochem Society Transact 2019; 47(2): 671-77. [CrossRef] google scholar
  • 15. Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and function of the outer membrane channel TolC in multidrug resis-tance and physiology of enterobacteria. Frontiers Microbiol 2011; 2: 189. [CrossRef] google scholar
  • 16. Misra R, Bavro VN. Assembly and transport mechanism of tripar-tite drug efflux systems. Biochimica et Biophysica Acta (BBA) Pro-teins Proteomics 2009; 1794(5): 817-25. [CrossRef] google scholar
  • 17. Rickard AH, Lindsay S, Lockwood GB, Gilbert P. Induction of the mar operon by miscellaneous groceries. J Appl Microbiol 2004; 97(5): 1063-68. [CrossRef] google scholar
  • 18. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci 1992; 50(3): 203-12. [CrossRef] google scholar
  • 19. Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candi-da albicans: a potential virulence-regulating mechanism. J Infect Dis 2000; 181(4): 1441-46. [CrossRef] google scholar
  • 20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Meth-ods 2001; 25: 402-08. [CrossRef] google scholar
  • 21. Gumus D, Yoruk E, Kalayci-Yuksek F, Uz G, Topal-Sarikaya A, Ang-Kucuker M. The effects of insulin and glucose on different characteristics of a UPEC: alterations in growth rate and expression levels of some virulence genes. Clin Lab 2017; 63(10): 1589-97. [CrossRef] google scholar
  • 22. Gümüş D, Yüksek FK, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, et al. The effects of insulin and glucose on growth and expression of mar regulon in E. coli. Turkish J Clin Lab 2019; 10(2): 209-16. google scholar
  • 23. Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiol 2007; 153(12): 3923-38. [CrossRef] google scholar
  • 24. Sperandio V. Torres AG, Jarvis B, Nataro JP, and Kaper JB. Bacte-ria-host communication: the language of hormones. Proc Natl Acad Sci USA 2003; 100: 8951-6. [CrossRef] google scholar
  • 25. Hughes DT, Sperandio V. Inter-kingdom signalling: communica-tion between bacteria and their hosts. Nature Reviews Microbiol-ogy 2008; 6(2): 111-20. [CrossRef] google scholar
  • 26. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 2003; 361 (9352): 130-5. [CrossRef] google scholar
  • 27. Garda-Gömez E, Gonzalez-Pedrajo B, Camacho-Arroyo I. Role of sex steroid hormones in bacterial-host interactions. BioMed Res International 2013; 2013: 928290. [CrossRef] google scholar
  • 28. Saia RS, Garcia FM, Carnio EC. Estradiol protects female rats against sepsis induced by Enterococcus faecalis improving leuko-cyte bactericidal activity. Steroids 2015; 102: 17-26. [CrossRef] google scholar
  • 29. Patt MW, Conte L, Blaha M, Plotkin BJ. Steroid hormones as in-terkingdom signaling molecules: Innate immune function and microbial colonization modulation. AIMS Molecul Sci 2018; 5(1): 117-30. [CrossRef] google scholar
  • 30. Plotkin BJ, Roose RJ, Erikson Q, Viselli SM. Effect of androgens and glucocorticoids on microbial growth and antimicrobial suscepti-bility. Curr Microbiol 2003; 47(6): 514-20. [CrossRef] google scholar
  • 31. Jerse AE, Wu H, Packiam M, Vonck RA, Begum A, Garvin LE. Estra-diol-treated female mice as surrogate hosts for Neisseria gonor-rhoeae genital tract infections. Frontiers Microbiol 2011; 2: 107. [CrossRef] google scholar
  • 32. Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsri-sate S. Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderia pseudomallei are enhanced by epinephrine. Pathogens Dis 2014; 72(1): 24-31. [CrossRef] google scholar
  • 33. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN. Norepinephrine represses the expression of toxA and the sid-erophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 299(1): 100-09. [CrossRef] google scholar
  • 34. Yokoyama M, Hinode D, Masuda K, Yoshioka M, Grenier D. Effect of female sex hormones on Campylobacter rectus and human gingival fibroblasts. Oral Microbiol Immunol 2005; 20(4): 239-43. [CrossRef] google scholar
  • 35. Gonullu N, Kucukbasmaci O, Buyukbaba-Boral O, Ang-Kucuker M. The influence of glucose added urine on the in vitro antimicrobial activity of various antibiotics. Indian J Med Res 2008; 128(5): 663-5. google scholar
  • 36. Roberts A, Matthews JB, Socransky SS, Freestone PPE, Williams PH, Chapple ILC. Stress and the periodontal diseases: effects of cate-cholamines on the growth of periodontal bacteria in vitro. Oral Microbiol Immunol 2002; 17(5): 296-303. [CrossRef] google scholar
  • 37. Plotkin BJ, Konakieva MI. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017; 128: 120-7. [CrossRef] google scholar
  • 38. Micheli MD, Bille J, Schueller C, Sanglard D. A common drug-re-sponsive element mediates the upregulation of the Candida al-bicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiol 2002; 43(5): 1197214. [CrossRef] google scholar
  • 39. Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukho-padhyay G, Prasad R. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopatho-logia 2007; 164(1): 1-17. [CrossRef] google scholar
  • 40. Peng B, Ma YM, Zhang JY, Li H. Metabolome strategy against Ed-wardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish & Shellfish Immunol 2015; 45(2): 86976. [CrossRef] google scholar
  • 41. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradi-cation of bacterial persisters by aminoglycosides. Nature 2011; 473(7346): 216-20. [CrossRef] google scholar
  • 42. Cohen SP, Levy SB, Foulds J, Rosner JL. Salicylate induction of an-tibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 1993; 175(24): 785662. [CrossRef] google scholar
  • 43. Maira-LitranT, Allison DG, Gilbert P. Expression ofthe multiplean-tibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. J Appl Microbiol 2000; 88(2): 243-7. [CrossRef] google scholar
  • 44. Chubiz LM, Rao CV. Role of the mar-sox-rob regulon in regulating outer membrane porin expression. J Bacteriol 2011; 193(9): 225260. [CrossRef] google scholar

Norepinefrin ve Östradiol Escherichia coli’nin Üremesini ve Mar Genlerinin Ekspresyonunu Etkiler mi?

Yıl 2021, Cilt: 11 Sayı: 3, 200 - 206, 08.12.2021
https://doi.org/10.26650/experimed.2021.989918

Öz

Amaç: Hormonların bakterilerin virulansı, antibiyotik duyarlılığı ve üremesini düzenlediği bilinmektedir. Bu çalışmada, norepinefrin (NE) ve östradiolün (Est) Escherichia (E) coli SPC105 suşunun üremesi ve kromozomal çoğul antibiyotik direnci (mar) lokusu ve ilişkili genlerin (marA, marR, ompF, acrA, acrB ve tolC) ekspresyonu üzerine olası etkileri incelenmiştir.

Gereç ve Yöntem:E. coli SPC105 suşu serum ilave edilmiş SAPI (kontrol olarak) ve norepinefrin (0,0017 μg/mL, 0,04 μg/mL ve 100 μg/mL) ile östradiol (0,4 ng/mL, 3 ng/mL, 300 ng/mL) eklenmiş serum-SAPI besiyerinde üretilmiştir. Üreme değişimleri turbidimetrik yöntem ile; gen ekspresyon düzeyleri ise kantitatif polimeraz zincir reaksiyonu (qPCR) ile araştırılmıştır.

Bulgular: Çalışmamızın sonucunda yüksek düzey Est dışında tüm denenen hormon konsantrasyonlarının E. coli SPC105 suşunun üremesi üzerine etkisi olduğu (inkübasyon süresine veya hormon konsantrasyonuna bağlı olarak baskılama/arttırma yönünde) gösterilmiştir. NE ve Est’nin tüm konsantrasyonlarının incelenen tüm hedef genlerin ekpresyonunu arttırdığı gösterilmiştir.

Sonuç: Sonuçlarımız incelenen bu iki hormonun E. coli SPC105 su-şunun üremesi ve mar operonunun ekspresyonunda, transkripsiyonel seviyede, olası etkileri üzerine yeni bir veri ortaya koymuştur.

Kaynakça

  • 1. Lyte M, Freestone PP. Microbial Endocrinology: Inter kingdom sig-naling in Infectious Disease and Health. New York: Springer; 2010. [CrossRef] google scholar
  • 2. LeRoith D, Shiloach J, Roth J, Lesniak MA. Insulin or a closely re-lated molecule is native to Escherichia coli. Journal of Biological Chemistry 1981; 256(13): 6533-6. [CrossRef] google scholar
  • 3. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Mi-crobiol 2001; 55: 165-99. [CrossRef] google scholar
  • 4. Plotkin BJ, Viselli SM. Effect of insulin on microbial growth. Curr Microbiol 2000; 41: 60-4. [CrossRef] google scholar
  • 5. Kornman KS, Loesche WJ. Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect and Immun 1982; 35(1): 256-63. [CrossRef] google scholar
  • 6. Delcenserie V, LaPointe G, Charaslertrangsi T, Rabalski A, Griffiths MW. Glucose decreases virulence gene expression of Escherichia coli O157: H7. J Food Protect 2012; 75(4): 748-52. [CrossRef] google scholar
  • 7. Ruiz C, Levy SB. Many chromosomal genes modulate MarA-me-diated multidrug resistance in Escherichia coli. Antimicrobiol Agents Chemother 2010; 54(5): 2125-34. [CrossRef] google scholar
  • 8. Randall LP, Woodward MJ. The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci 2002; 72: 87-93. [CrossRef] google scholar
  • 9. Kunonga NI, Sobieski RJ, Crupper SS. Prevalence of the multiple antibiotic resistance operon (marRAB) in the genus Salmonella. FEMS Microbiol Lett 2000; 187(2): 155-60. [CrossRef] google scholar
  • 10. Vinue L, McMurry LM, Levy SB. The 216-bp marB gene of the mar-RAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 2013; 345(1): 49-55. [CrossRef] google scholar
  • 11. Weston N, Sharma P, Ricci V, Piddock LJ. Regulation of the Acr-AB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2018; 169(7-8): 425-31. [CrossRef] google scholar
  • 12. Alekshun MN. Levy SB. The mar regulon: multiple resistances to antibiotics and other toxic chemicals. Trends Microbiol 1999; 7(10): 410-13. [CrossRef] google scholar
  • 13. Alekshun MN, Levy SB. The Escherichia coli mar locus-Antibiotic resistance and more. ASM News 2004; 70(10): 451-56. google scholar
  • 14. Lankester A, Ahmed S, Lamberte LE, Kettles RA, Grainger DC. The Escherichia coli multiple antibiotic resistance activator protein re-presses transcription of the lac operon. Biochem Society Transact 2019; 47(2): 671-77. [CrossRef] google scholar
  • 15. Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S. Mechanism and function of the outer membrane channel TolC in multidrug resis-tance and physiology of enterobacteria. Frontiers Microbiol 2011; 2: 189. [CrossRef] google scholar
  • 16. Misra R, Bavro VN. Assembly and transport mechanism of tripar-tite drug efflux systems. Biochimica et Biophysica Acta (BBA) Pro-teins Proteomics 2009; 1794(5): 817-25. [CrossRef] google scholar
  • 17. Rickard AH, Lindsay S, Lockwood GB, Gilbert P. Induction of the mar operon by miscellaneous groceries. J Appl Microbiol 2004; 97(5): 1063-68. [CrossRef] google scholar
  • 18. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci 1992; 50(3): 203-12. [CrossRef] google scholar
  • 19. Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candi-da albicans: a potential virulence-regulating mechanism. J Infect Dis 2000; 181(4): 1441-46. [CrossRef] google scholar
  • 20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Meth-ods 2001; 25: 402-08. [CrossRef] google scholar
  • 21. Gumus D, Yoruk E, Kalayci-Yuksek F, Uz G, Topal-Sarikaya A, Ang-Kucuker M. The effects of insulin and glucose on different characteristics of a UPEC: alterations in growth rate and expression levels of some virulence genes. Clin Lab 2017; 63(10): 1589-97. [CrossRef] google scholar
  • 22. Gümüş D, Yüksek FK, Uz G, Bayraktar A, Köseoğlu P, Ofluoğlu Y, et al. The effects of insulin and glucose on growth and expression of mar regulon in E. coli. Turkish J Clin Lab 2019; 10(2): 209-16. google scholar
  • 23. Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiol 2007; 153(12): 3923-38. [CrossRef] google scholar
  • 24. Sperandio V. Torres AG, Jarvis B, Nataro JP, and Kaper JB. Bacte-ria-host communication: the language of hormones. Proc Natl Acad Sci USA 2003; 100: 8951-6. [CrossRef] google scholar
  • 25. Hughes DT, Sperandio V. Inter-kingdom signalling: communica-tion between bacteria and their hosts. Nature Reviews Microbiol-ogy 2008; 6(2): 111-20. [CrossRef] google scholar
  • 26. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 2003; 361 (9352): 130-5. [CrossRef] google scholar
  • 27. Garda-Gömez E, Gonzalez-Pedrajo B, Camacho-Arroyo I. Role of sex steroid hormones in bacterial-host interactions. BioMed Res International 2013; 2013: 928290. [CrossRef] google scholar
  • 28. Saia RS, Garcia FM, Carnio EC. Estradiol protects female rats against sepsis induced by Enterococcus faecalis improving leuko-cyte bactericidal activity. Steroids 2015; 102: 17-26. [CrossRef] google scholar
  • 29. Patt MW, Conte L, Blaha M, Plotkin BJ. Steroid hormones as in-terkingdom signaling molecules: Innate immune function and microbial colonization modulation. AIMS Molecul Sci 2018; 5(1): 117-30. [CrossRef] google scholar
  • 30. Plotkin BJ, Roose RJ, Erikson Q, Viselli SM. Effect of androgens and glucocorticoids on microbial growth and antimicrobial suscepti-bility. Curr Microbiol 2003; 47(6): 514-20. [CrossRef] google scholar
  • 31. Jerse AE, Wu H, Packiam M, Vonck RA, Begum A, Garvin LE. Estra-diol-treated female mice as surrogate hosts for Neisseria gonor-rhoeae genital tract infections. Frontiers Microbiol 2011; 2: 107. [CrossRef] google scholar
  • 32. Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsri-sate S. Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderia pseudomallei are enhanced by epinephrine. Pathogens Dis 2014; 72(1): 24-31. [CrossRef] google scholar
  • 33. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN. Norepinephrine represses the expression of toxA and the sid-erophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 2009; 299(1): 100-09. [CrossRef] google scholar
  • 34. Yokoyama M, Hinode D, Masuda K, Yoshioka M, Grenier D. Effect of female sex hormones on Campylobacter rectus and human gingival fibroblasts. Oral Microbiol Immunol 2005; 20(4): 239-43. [CrossRef] google scholar
  • 35. Gonullu N, Kucukbasmaci O, Buyukbaba-Boral O, Ang-Kucuker M. The influence of glucose added urine on the in vitro antimicrobial activity of various antibiotics. Indian J Med Res 2008; 128(5): 663-5. google scholar
  • 36. Roberts A, Matthews JB, Socransky SS, Freestone PPE, Williams PH, Chapple ILC. Stress and the periodontal diseases: effects of cate-cholamines on the growth of periodontal bacteria in vitro. Oral Microbiol Immunol 2002; 17(5): 296-303. [CrossRef] google scholar
  • 37. Plotkin BJ, Konakieva MI. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017; 128: 120-7. [CrossRef] google scholar
  • 38. Micheli MD, Bille J, Schueller C, Sanglard D. A common drug-re-sponsive element mediates the upregulation of the Candida al-bicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiol 2002; 43(5): 1197214. [CrossRef] google scholar
  • 39. Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukho-padhyay G, Prasad R. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopatho-logia 2007; 164(1): 1-17. [CrossRef] google scholar
  • 40. Peng B, Ma YM, Zhang JY, Li H. Metabolome strategy against Ed-wardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish & Shellfish Immunol 2015; 45(2): 86976. [CrossRef] google scholar
  • 41. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradi-cation of bacterial persisters by aminoglycosides. Nature 2011; 473(7346): 216-20. [CrossRef] google scholar
  • 42. Cohen SP, Levy SB, Foulds J, Rosner JL. Salicylate induction of an-tibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 1993; 175(24): 785662. [CrossRef] google scholar
  • 43. Maira-LitranT, Allison DG, Gilbert P. Expression ofthe multiplean-tibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. J Appl Microbiol 2000; 88(2): 243-7. [CrossRef] google scholar
  • 44. Chubiz LM, Rao CV. Role of the mar-sox-rob regulon in regulating outer membrane porin expression. J Bacteriol 2011; 193(9): 225260. [CrossRef] google scholar
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Defne Gümüş 0000-0003-4070-6924

Fatma Kalaycı Yüksek 0000-0002-0028-5646

Özlem Sefer 0000-0002-2711-5938

Emre Yörük 0000-0003-2770-0157

Gülşen Uz 0000-0001-9895-5187

A. Mine Küçüker 0000-0002-4809-3985

Yayımlanma Tarihi 8 Aralık 2021
Gönderilme Tarihi 2 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

Vancouver Gümüş D, Kalaycı Yüksek F, Sefer Ö, Yörük E, Uz G, Küçüker AM. Do Norepinephrine and Estradiol Affect the Growth of Escherichia coli and Expressions of MarGenes?. Experimed. 2021;11(3):200-6.