Araştırma Makalesi
BibTex RIS Kaynak Göster

Ifosfamide-Loaded Cubosomes: An Approach to Potentiate Cytotoxicity against MDA-MB-231 Breast Cancer Cells

Yıl 2023, Cilt: 48 Sayı: 1, 37 - 52, 01.03.2023
https://doi.org/10.55262/fabadeczacilik.1145208

Öz

Background: Ifosfamide (IFS) is proved efficacious against breast cancer, an enormously diagnosed cancer across the globe. However, the clinical efficacy of IFS is limited owing to its hydrophilicity, less stability, and dose-dependent toxicities. Therefore, the primary goal of the present research was to develop IFS-loaded cubosomes with improved anticancer efficacy and reduced dose-dependent toxicities.
Methods: The IFS-cubosomes were optimized using a 32 factorial design based on IFS content and zeta potential. The optimized cubosomal dispersion was further assessed for particle size, in vitro IFS release, haemolysis, cytotoxicity, cellular uptake and physical stability.
Results: The optimized IFS-cubosomal dispersion exhibited maximum IFS content (89.75±4.3%) and better zeta potential value (-40.0±1.6 mV), and size in nanometer. Moreover, IFS-cubosomes retarded IFS release (about 91 %) after 12 h than plain IFS solution (>99 % within 2 h). The IFS-cubosomes displayed lower haemolysis (3.7±0.79%) towards human RBCs. Besides, the in vitro cytotoxicity of IFS-cubosomes was noticed to be substantially higher (IC50: 0.64±0.08 µM) than plain IFS solution (IC50: 1.46±0.21 µM) against multi-drug resistant (MDR) breast cancer (MDA-MB-231) cells. DAPI staining revealed death of IFS-cubosomes treated cells mainly by apoptosis. The cubosomes showed increased uptake by cancer cells. Furthermore, IFS-cubosomes were found to be more stable at refrigeration temperature than at room temperature.
Conclusion: Thus, IFS-cubosomes could be a novel avenue in the treatment of breast cancer with improved anticancer efficacy and reduced toxicity. However, further in vivo investigations are desired to validate these claims.

Destekleyen Kurum

NA

Proje Numarası

NA

Teşekkür

NA

Kaynakça

  • Addeo, R., Faiola, V., Guarrasi, R., Montella, L., Vincenzi, B., Capasso, E., Cennamo, G., Rotundo, M. S., Tagliaferri, P., Caraglia, M., Del Prete, S. (2008). Liposomal pegylated doxorubicin plus vinorelbine combination as first-line chemotherapy for metastatic breast cancer in elderly women > or =65 years of age. Cancer chemotherapy and pharmacology, 62(2), 285–292. https://doi.org/10.1007/s00280-007-0605-6.
  • Alavi, M., Webster, T. J. (2020). Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine (London, England), 15(24), 2399–2410. https://doi.org/10.2217/nnm-2020-0199.
  • Almotwaa, Sahar. (2021). Coupling Ifosfamide to nanoemulsion-based clove oil enhances its toxicity on malignant breast cancer and cervical cancer cells. Pharmacia, 68. 779-787. http://dx.doi.org/10.3897/pharmacia.68.e68291.
  • Andrgie, A. T., Birhan, Y. S., Mekonnen, T. W., Hanurry, E. Y., Darge, H. F., Lee, R. H., Chou, H. Y., Tsai, H. C. (2019). Redox-Responsive Heparin-Chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity. Polymers, 12(1), 43. https://doi.org/10.3390/polym12010043.
  • Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46(14), 4218–4244. https://doi.org/10.1039/c6cs00636a.
  • Bhat, S. S., Revankar, V. K., Kumbar, V., Bhat, K., Kawade, V. A. (2018). Synthesis, crystal structure and biological properties of a cis-dichloridobis(diimine)copper(II) complex. Acta Crystallographica. Section C, Structural Chemistry, 74(Pt 2), 146–151. https://doi.org/10.1107/S2053229617018551.
  • Craig, C., Julia N, Tim W. (2008).The side effects of chemotherapeutic agents. Current Anaesthesia Critical Care, 19(2), 70–79.
  • Elakkad, Y. E., Mohamed, S., Abuelezz, N. Z. (2021). Potentiating the Cytotoxic Activity of a Novel Simvastatin-Loaded Cubosome against Breast Cancer Cells: Insights on Dual Cell Death via Ferroptosis and Apoptosis. Breast Cancer (Dove Medical Press), 13, 675–689. https://doi.org/10.2147/BCTT.S336712.
  • Escalante, J., McQuade, R. M., Stojanovska, V., Nurgali, K. (2017). Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas, 105, 23–29. https://doi.org/10.1016/j.maturitas.2017.04.021.
  • García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., López-Romero, J. M. (2019). Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel, Switzerland), 9(4), 638. https://doi.org/10.3390/nano9040638.
  • Gustafsson, J., Ljusberg-Wahren, H., Almgren, M., Larsson, K. (1996). Cubic lipid-water phase dispersed into submicron particles. Langmuir, 12, 4611–3. https://doi.org/10.1021/LA960318Y.
  • Hosseinzadeh, B. E., Nasri, S., Rahale, M. (2020). Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. Journal Nanostructure Chemistry, 10, 19–31.
  • Kumbhar, P.S., Sakate, A.M., Patil, O.B. et al. Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. Journal of Egyption National Cancer Institute, 32, 42 (2020). https://doi.org/10.1186/s43046-020-00053-1.
  • Lakshmi, N. M., Yalavarthi, P. R., Vadlamudi, H. C., Thanniru, J., Yaga, G., K, H. (2014). Cubosomes as targeted drug delivery systems - a biopharmaceutical approach. Current Drug Discovery Technologies, 11(3), 181–188. https://doi.org/10.2174/1570163811666140505125923.
  • McQuade, R. M., Stojanovska, V., Donald, E., Abalo, R., Bornstein, J. C., Nurgali, K. (2016). Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 28(12), 1861–1875. https://doi.org/10.1111/nmo.12890.
  • Mohamed, N., Mohamed, K.,Ghoraba, AA. (2015). In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. International Journal of Applied Pharmaceutics, 5(1),79–88.:http://dx.doi.org/10.22159/ijap.2019v11i2.30582.
  • Noujaim, J., Constantinidou, A., Messiou, C., Thway, K., Miah, A., Benson, C., Judson, I.,Jones, R. L. (2018). Successful ifosfamide rechallenge in soft-tissue sarcoma. American Journal of Clinical Oncology, 41(2), 147–151. https://doi.org/10.1097/COC.0000000000000243.
  • Rick D, Kellerman MD. (2021). In conn's current therapy. Elsevier, 1165-1168.
  • Sambamoorthy, U., Manjappa, A. S., Eswara, B., Sanapala, A. K., Nagadeepthi, N. (2021). Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: approach to obtain improved physicochemical characteristics of hydrolysable melphalan and anticancer activity in combination with simvastatin against multiple myeloma. AAPS PharmSciTech, 23(1), 23. https://doi.org/10.1208/s12249-021-02177-6.
  • Singh-Joy, S. D., McLain, V. C. (2008). Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. International Journal of Toxicology, 27 Suppl 2, 93–128. https://doi.org/10.1080/10915810802244595.
  • Suwankhong, D., Liamputtong, P. (2018). Physical and Emotional Experiences of Chemotherapy: A qualitative study among women with breast cancer in Southern Thailand. Asian Pacific Journal of Cancer Prevention: APJCP, 19(2), 521–528. https://doi.org/10.22034/APJCP.2018.19.2.521.
  • Wang, S. Q., Zhang, Q., Sun, C., Liu, G. Y. (2018). Ifosfamide-loaded lipid-core-nanocapsules to increase the anticancer efficacy in MG63 osteosarcoma cells. Saudi Journal of Biological Sciences, 25(6), 1140–1145. https://doi.org/10.1016/j.sjbs.2016.12.001.
  • Zhang, J., Ng, K. Y., & Ho, P. C. (2010). Interaction of oxazaphosphorines with multidrug resistance-associated protein 4 (MRP4). AAPS PharmSciTech, 12(3), 300–308. https://doi.org/10.1208/s12248-010-9189.
Yıl 2023, Cilt: 48 Sayı: 1, 37 - 52, 01.03.2023
https://doi.org/10.55262/fabadeczacilik.1145208

Öz

Proje Numarası

NA

Kaynakça

  • Addeo, R., Faiola, V., Guarrasi, R., Montella, L., Vincenzi, B., Capasso, E., Cennamo, G., Rotundo, M. S., Tagliaferri, P., Caraglia, M., Del Prete, S. (2008). Liposomal pegylated doxorubicin plus vinorelbine combination as first-line chemotherapy for metastatic breast cancer in elderly women > or =65 years of age. Cancer chemotherapy and pharmacology, 62(2), 285–292. https://doi.org/10.1007/s00280-007-0605-6.
  • Alavi, M., Webster, T. J. (2020). Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine (London, England), 15(24), 2399–2410. https://doi.org/10.2217/nnm-2020-0199.
  • Almotwaa, Sahar. (2021). Coupling Ifosfamide to nanoemulsion-based clove oil enhances its toxicity on malignant breast cancer and cervical cancer cells. Pharmacia, 68. 779-787. http://dx.doi.org/10.3897/pharmacia.68.e68291.
  • Andrgie, A. T., Birhan, Y. S., Mekonnen, T. W., Hanurry, E. Y., Darge, H. F., Lee, R. H., Chou, H. Y., Tsai, H. C. (2019). Redox-Responsive Heparin-Chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity. Polymers, 12(1), 43. https://doi.org/10.3390/polym12010043.
  • Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46(14), 4218–4244. https://doi.org/10.1039/c6cs00636a.
  • Bhat, S. S., Revankar, V. K., Kumbar, V., Bhat, K., Kawade, V. A. (2018). Synthesis, crystal structure and biological properties of a cis-dichloridobis(diimine)copper(II) complex. Acta Crystallographica. Section C, Structural Chemistry, 74(Pt 2), 146–151. https://doi.org/10.1107/S2053229617018551.
  • Craig, C., Julia N, Tim W. (2008).The side effects of chemotherapeutic agents. Current Anaesthesia Critical Care, 19(2), 70–79.
  • Elakkad, Y. E., Mohamed, S., Abuelezz, N. Z. (2021). Potentiating the Cytotoxic Activity of a Novel Simvastatin-Loaded Cubosome against Breast Cancer Cells: Insights on Dual Cell Death via Ferroptosis and Apoptosis. Breast Cancer (Dove Medical Press), 13, 675–689. https://doi.org/10.2147/BCTT.S336712.
  • Escalante, J., McQuade, R. M., Stojanovska, V., Nurgali, K. (2017). Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas, 105, 23–29. https://doi.org/10.1016/j.maturitas.2017.04.021.
  • García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., López-Romero, J. M. (2019). Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel, Switzerland), 9(4), 638. https://doi.org/10.3390/nano9040638.
  • Gustafsson, J., Ljusberg-Wahren, H., Almgren, M., Larsson, K. (1996). Cubic lipid-water phase dispersed into submicron particles. Langmuir, 12, 4611–3. https://doi.org/10.1021/LA960318Y.
  • Hosseinzadeh, B. E., Nasri, S., Rahale, M. (2020). Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. Journal Nanostructure Chemistry, 10, 19–31.
  • Kumbhar, P.S., Sakate, A.M., Patil, O.B. et al. Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. Journal of Egyption National Cancer Institute, 32, 42 (2020). https://doi.org/10.1186/s43046-020-00053-1.
  • Lakshmi, N. M., Yalavarthi, P. R., Vadlamudi, H. C., Thanniru, J., Yaga, G., K, H. (2014). Cubosomes as targeted drug delivery systems - a biopharmaceutical approach. Current Drug Discovery Technologies, 11(3), 181–188. https://doi.org/10.2174/1570163811666140505125923.
  • McQuade, R. M., Stojanovska, V., Donald, E., Abalo, R., Bornstein, J. C., Nurgali, K. (2016). Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 28(12), 1861–1875. https://doi.org/10.1111/nmo.12890.
  • Mohamed, N., Mohamed, K.,Ghoraba, AA. (2015). In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. International Journal of Applied Pharmaceutics, 5(1),79–88.:http://dx.doi.org/10.22159/ijap.2019v11i2.30582.
  • Noujaim, J., Constantinidou, A., Messiou, C., Thway, K., Miah, A., Benson, C., Judson, I.,Jones, R. L. (2018). Successful ifosfamide rechallenge in soft-tissue sarcoma. American Journal of Clinical Oncology, 41(2), 147–151. https://doi.org/10.1097/COC.0000000000000243.
  • Rick D, Kellerman MD. (2021). In conn's current therapy. Elsevier, 1165-1168.
  • Sambamoorthy, U., Manjappa, A. S., Eswara, B., Sanapala, A. K., Nagadeepthi, N. (2021). Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: approach to obtain improved physicochemical characteristics of hydrolysable melphalan and anticancer activity in combination with simvastatin against multiple myeloma. AAPS PharmSciTech, 23(1), 23. https://doi.org/10.1208/s12249-021-02177-6.
  • Singh-Joy, S. D., McLain, V. C. (2008). Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. International Journal of Toxicology, 27 Suppl 2, 93–128. https://doi.org/10.1080/10915810802244595.
  • Suwankhong, D., Liamputtong, P. (2018). Physical and Emotional Experiences of Chemotherapy: A qualitative study among women with breast cancer in Southern Thailand. Asian Pacific Journal of Cancer Prevention: APJCP, 19(2), 521–528. https://doi.org/10.22034/APJCP.2018.19.2.521.
  • Wang, S. Q., Zhang, Q., Sun, C., Liu, G. Y. (2018). Ifosfamide-loaded lipid-core-nanocapsules to increase the anticancer efficacy in MG63 osteosarcoma cells. Saudi Journal of Biological Sciences, 25(6), 1140–1145. https://doi.org/10.1016/j.sjbs.2016.12.001.
  • Zhang, J., Ng, K. Y., & Ho, P. C. (2010). Interaction of oxazaphosphorines with multidrug resistance-associated protein 4 (MRP4). AAPS PharmSciTech, 12(3), 300–308. https://doi.org/10.1208/s12248-010-9189.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Popat Kumbhar Bu kişi benim 0000-0002-6753-239X

Vıshvajıt Khade Bu kişi benim 0000-0002-7522-8400

Varsha Khadake Bu kişi benim 0000-0003-3623-6595

Pradnya Marale Bu kişi benim 0000-0003-2633-5928

Arehallı Manjappa Bu kişi benim 0000-0002-8576-6608

Sameer Nadaf Bu kişi benim 0000-0002-7132-1886

Vıjay Kumbar Bu kişi benim 0000-0001-6261-1665

Durgacharan Bhagwat 0000-0002-3993-8851

John Disouza 0000-0002-9807-7932

Proje Numarası NA
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 18 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 1

Kaynak Göster

APA Kumbhar, P., Khade, V., Khadake, V., Marale, P., vd. (2023). Ifosfamide-Loaded Cubosomes: An Approach to Potentiate Cytotoxicity against MDA-MB-231 Breast Cancer Cells. Fabad Eczacılık Bilimler Dergisi, 48(1), 37-52. https://doi.org/10.55262/fabadeczacilik.1145208