Araştırma Makalesi
BibTex RIS Kaynak Göster

Therapeutic Effect of Sinapic Acid against 5-Fluorouracil-Induced Oxidative Stress and Inflammation in Rat Ovarium: An Experimental Approach

Yıl 2023, Cilt: 2 Sayı: 2, 1 - 7, 30.06.2023
https://doi.org/10.59518/farabimedj.1221397

Öz

Tissue toxicity caused by 5-fluorouracil (5-FU) is associated with increased reactive oxygen species and inflammatory cytokines. Sinapic acid (SA) has both antioxidant and anti-inflammatory activities. Although SA has been shown to ameliorate chemical-induced tissue damage in various experimental models, its effects against 5-FU-induced ovarian damage have not yet been investigated. It was therefore aimed to evaluate the therapeutic potential of SA against 5-FU-induced ovarian damage in rats, together with the mechanisms of oxidative stress and inflammation for the first time in this study. Thirty rats were distributed into five groups: control, 5-FU (100 mg/kg) 5-FU+SA (2.5 and 5 mg/kg) and SA (5 mg/kg). 5-FU was applied to rats intraperitoneally on the 1st day of experiments and then SA was administrated for 3 successive days. Ovarian levels of lipid peroxidation [malondialdehyde (MDA)], oxidative stress (total oxidant status (TOS) and oxidative stress index (OSI)] antioxidant system [total antioxidant status (TAS), and catalase (CAT)], DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)] and inflammatory [interleukin-6 (IL-6)] markers in ovarian tissues were determined using spectrophotometric methods. It was determined that a single dose of 5-FU administration in rats significantly increased oxidative stress and inflammation in the ovarian tissue and suppressed the antioxidant system compared to the control group (p<0.05). It was revealed that SA significantly suppressed ovarian inflammation by decreasing IL-6 levels, attenuates DNA damage by decreasing 8-OHdG levels, and also provides restoration of oxidative stress by decreasing MDA, TOS and OSI levels and increasing TAS and CAT levels in a dose-dependent manner. In conclusion, we found that SA exhibits therapeutic effects against 5-FU-induced ovarian damage. These findings suggest that SA may be a potentially useful agent for protection against chemotherapeutic-induced ovarian injury.

Kaynakça

  • 1. Mentese A, Alemdar NT, Livaoglu A, Demir EA, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. J Obstet Gynaecol. 2022; 42(8): 3584-3590. DOI: 10.1080/01443615.2022.2130201.
  • 2. Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol. 2016; 35(11): 1203-1213. DOI: 10.1177/0960327115626583.
  • 3. Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-fluorouracil is highly toxic to growing ovarian follicles in mice. Toxicol Sci. 2018; 166(1): 97-107. DOI: 10.1093/toxsci/kfy189.
  • 4. Hodroj K, Barthelemy D, Lega JC, et al. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open. 2021; 6(3): 100125. DOI: 10.1016/j.esmoop.2021.100125.
  • 5. Almeida JZ, Lima LF, Vieira LA, et al. 5-Fluorouracil disrupts ovarian preantral follicles in young C57BL6J mice. Cancer Chemother Pharmacol. 2021; 87(4): 567-578. DOI: 10.1007/s00280-020-04217-7.
  • 6. Mentese A, Demir S, Alemdar NT, Aliyazicioglu Y, Deger O. The effect of chlorogenic acid on 5-fluorouracil-induced oxidative damage in rat ovarian tissue. Farabi Med J. 2022; 1(1): 1-7.
  • 7. Naren G, Guo J, Bai Q, Fan N, Nashun B. Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Rev Mol Med. 2022; 24: e9. DOI: 10.1017/erm.2022.3.
  • 8. Pandi A, Kalappan VM. Pharmacological and therapeutic applications of sinapic acid-an updated review. Mol Biol Rep. 2021; 48(4): 3733-3745. DOI: 10.1007/s11033-021-06367-0.
  • 9. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res. 2013; 36(5): 608-618. DOI: 10.1007/s12272-013-0033-6.
  • 10. Chen C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid Med Cell Longev. 2016; 2016: 3571614. DOI: 10.1155/2016/3571614.
  • 11. Rezaei S, Hosseinimehr SJ, Zargari M, Malekshah AK, Mirzaei M, Amiri FT. Protective effects of sinapic acid against cyclophosphamide-induced testicular toxicity via inhibiting oxidative stress, caspase-3 and NF-kB activity in BALB/c mice. Andrologia. 2021; 53(10): e14196. DOI: 10.1111/and.14196.
  • 12. Ansari MA. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother. 2017; 93: 646-653. DOI: 10.1016/j.biopha.2017.06.085.
  • 13. Raish M, Ahmad A, Ahmad Ansari M, et al. Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomed Pharmacother. 2018; 108: 224-231. DOI: 10.1016/j.biopha.2018.09.032.
  • 14. Zhang S, Liu Y, Xiang D, et al. Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed Pharmacother. 2018; 106: 910-916. DOI: 10.1016/j.biopha.2018.07.029.
  • 15. Shahmohamady P, Eidi A, Mortazavi P, Panahi N, Minai-Tehrani D. Effect of sinapic acid on memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pol J Pathol. 2018; 69(3): 266-277. DOI: 10.5114/pjp.2018.79546.
  • 16. Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. The effects of sinapic acid on the development of metabolic disorders induced by estrogen deficiency in rats. Oxid Med Cell Longev. 2018; 2018: 9274246. DOI: 10.1155/2018/9274246.
  • 17. Demir EA, Mentese A, Livaoglu A, Alemdar NT, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023; 46(1): 97-103. DOI: 10.1080/01480545.2021.2011312.
  • 18. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-278. DOI: 10.1016/0003-2697(78)90342-1.
  • 19. Demir S, Kazaz IO, Aliyazicioglu Y, et al. Effect of ethyl pyruvate on oxidative state and endoplasmic reticulum stress in a rat model of testicular torsion. Biotech Histochem. 2020; 95(4): 317-322. DOI: 10.1080/10520295.2019.1695947.
  • 20. Al-Asmari AK, Khan AQ, Al-Qasim AM, Al-Yousef Y. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by modulating the expression of inflammatory mediators. Toxicol Rep. 2015; 2: 908-916. DOI: 10.1016/j.toxrep.2015.06.006.
  • 21. Liu JH, Hsieh CH, Liu CY, Chang CW, Chen YJ, Tsai TH. Anti-inflammatory effects of Radix Aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. J Ethnopharmacol. 2021; 271: 113912. DOI: 10.1016/j.jep.2021.113912.
  • 22. Demir EA, Demir S, Turkmen N, Turan I. The effect of Rosa pimpinellifolia extract on the proliferation of human tumor cells. KSU J Agric Nat. 2021; 24(6): 1170-1176. DOI: 10.18016/ksutarimdoga.vi.848137.
  • 23. Aliyazicioglu Y, Demir S, Yaman SO, et al. Phytochemical analysis of Dorycnium pentaphyllum and its antiproliferative effect on cervix cancer cells. KSU J Agric Nat. 2019; 22(Suppl 2): 365-373. DOI: 10.18016/ksutarimdoga.vi.579938.
  • 24. Turan I, Demir S, Aliyazicioglu R, et al. Dimethyl sulfoxide extract of Dianthus carmelitarum induces S phase arrest and apoptosis in human colon cancer cells. Nutr Cancer. 2019; 71(7): 1181-1188. DOI: 10.1080/01635581.2019.1598563.
  • 25. Arab HH, Salama SA, Maghrabi IA. Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell Physiol Biochem. 2018; 46(4): 1628-1642. DOI: 10.1159/000489210.
  • 26. Bin Jardan YA, Ansari MA, Raish M, et al. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. Biomed Res Int. 2020; 2020: 3921796. doi:10.1155/2020/3921796.
  • 27. Demir S, Kazaz IO, Kerimoglu G, et al. Astaxanthin protects testicular tissue against torsion/detorsion-induced injury via suppressing endoplasmic reticulum stress in rats. J Invest Surg. 2022; 35(5): 1044-1049. DOI: 10.1080/08941939.2021.1995540.
  • 28. Demir EA, Mentese A, Kucuk H, Alemdar NT, Demir S. p-Coumaric acid alleviates cisplatin-induced ovarian toxicity in rats. J Obstet Gynaecol Res. 2022; 48(2): 411-419. DOI: 10.1111/jog.15119.
  • 29. Rehman MU, Ali N, Rashid S, et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: Probable role of oxidative and inflammatory markers. Pharmacol Rep. 2014; 66(6): 1050-1059. DOI: 10.1016/j.pharep.2014.06.004.
  • 30. Rashid S, Ali N, Nafees S, Ahmad ST, Hasan SK, Sultana S. Abrogation of 5-flourouracil induced renal toxicity by bee propolis via targeting oxidative stress and inflammation in Wistar rats. J Pharm Res. 2013; 7(2): 189-194. DOI: 10.1016/j.jopr.2013.03.003.
  • 31. Singh HP, Singh TG, Singh R. Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. J Pharm Bioallied Sci. 2020; 12(2): 146-154. DOI: 10.4103/jpbs.JPBS_220_19.
  • 32. Ahmad A, Alkharfy KM, Bin Jardan YA, et al. Sinapic acid mitigates methotrexate-induced hepatic injuries in rats through modulation of Nrf-2/HO-1 signaling. Environ Toxicol. 2021; 36(7): 1261-1268. DOI: 10.1002/tox.23123.
  • 33. Zeng D, Wang Y, Chen Y, et al. Angelica polysaccharide antagonizes 5-FU-induced oxidative stress injury to reduce apoptosis in the liver through Nrf2 pathway. Front Oncol. 2021; 11: 720620. DOI: 10.3389/fonc.2021.720620.
  • 34. Raish M, Shahid M, Bin Jardan YA, et al. gastroprotective effect of sinapic acid on ethanol-induced gastric ulcers in rats: Involvement of Nrf2/HO-1 and NF-κB signaling and antiapoptotic role. Front Pharmacol. 2021; 12: 622815. DOI: 10.3389/fphar.2021.622815.
  • 35. Shahid M, Raish M, Ahmad A, et al. Sinapic acid ameliorates acetic acid-induced ulcerative colitis in rats by suppressing inflammation, oxidative stress, and apoptosis. Molecules. 2022; 27(13): 4139. DOI: 10.3390/molecules27134139.

Sıçan Yumurtalık Dokusunda 5-Florourasil ile Uyarılan Oksidatif Stres ve İnflamasyona Karşı Sinapik Asitin Terapötik Etkisi: Deneysel Bir Yaklaşım

Yıl 2023, Cilt: 2 Sayı: 2, 1 - 7, 30.06.2023
https://doi.org/10.59518/farabimedj.1221397

Öz

5-florourasil (5-FU)'nun neden olduğu doku toksisitesi, artan reaktif oksijen türleri ve inflamatuar sitokinler ile ilişkilidir. Sinapik asit (SA) bir fenolik asittir ve hem antioksidan hem de anti-inflamatuar aktivitelere sahiptir. Çeşitli deneysel modellerde SA'nın kimyasal kaynaklı doku hasarını iyileştirdiği gösterilmiş olmasına rağmen, 5-FU kaynaklı yumurtalık hasarına karşı etkileri henüz araştırılmamıştır. Bu nedenle bu çalışmada SA'nın sıçanlarda 5-FU ile indüklenen yumurtalık hasarına karşı terapötik potansiyelinin oksidatif stres ve inflamasyon mekanizmaları ile birlikte ilk kez değerlendirilmesi amaçlandı. Otuz sıçan beş gruba ayrıldı: kontrol, 5-FU (100 mg/kg), 5-FU+SA (2,5 ve 5 mg/kg) ve SA (5 mg/kg). Sıçanlara deneylerin 1. günü intraperitoneal yoldan 5-FU, ardından 3 gün boyunca SA uygulandı. Yumurtalık lipid peroksidasyon seviyeleri [malondialdehit (MDA)], oksidatif stres (toplam oksidan durum (TOS) ve oksidatif stres indeksi (OSI)], antioksidan sistem [toplam antioksidan durum (TAS) ve katalaz (CAT)], DNA hasarı [8-hidroksi-2'-deoksiguanozin (8-OHdG)] ve inflamatuvar [interlökin-6 (IL-6)] belirteçlerinin düzeyleri spektrofotometrik yöntemlerle belirlendi. Sıçanlarda tek doz 5-FU uygulamasının kontrol grubuna göre yumurtalık dokusunda oksidatif stresi ve inflamasyonu anlamlı olarak arttırdığı ve antioksidan sistemi baskıladığı belirlendi (p<0.05). SA'nın IL-6 düzeylerini düşürerek over inflamasyonunu önemli ölçüde baskıladığı, 8-OHdG düzeylerini düşürerek DNA hasarını azalttığı ve ayrıca MDA, TOS ile OSI düzeylerini düşürerek ve TAS ile CAT düzeylerini artırarak oksidatif stresin restorasyonunu doza bağımlı bir şekilde sağladığı ortaya konuldu (p<0.05). Sonuç olarak, SA'nın 5-FU ile indüklenen yumurtalık hasarına karşı terapötik etkiler gösterdiğini bulduk. Bu bulgular SA'nın kemoterapötik kaynaklı yumurtalık hasarına karşı koruma için potansiyel olarak yararlı bir ajan olabileceğini düşündürmektedir.

Kaynakça

  • 1. Mentese A, Alemdar NT, Livaoglu A, Demir EA, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. J Obstet Gynaecol. 2022; 42(8): 3584-3590. DOI: 10.1080/01443615.2022.2130201.
  • 2. Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol. 2016; 35(11): 1203-1213. DOI: 10.1177/0960327115626583.
  • 3. Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-fluorouracil is highly toxic to growing ovarian follicles in mice. Toxicol Sci. 2018; 166(1): 97-107. DOI: 10.1093/toxsci/kfy189.
  • 4. Hodroj K, Barthelemy D, Lega JC, et al. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open. 2021; 6(3): 100125. DOI: 10.1016/j.esmoop.2021.100125.
  • 5. Almeida JZ, Lima LF, Vieira LA, et al. 5-Fluorouracil disrupts ovarian preantral follicles in young C57BL6J mice. Cancer Chemother Pharmacol. 2021; 87(4): 567-578. DOI: 10.1007/s00280-020-04217-7.
  • 6. Mentese A, Demir S, Alemdar NT, Aliyazicioglu Y, Deger O. The effect of chlorogenic acid on 5-fluorouracil-induced oxidative damage in rat ovarian tissue. Farabi Med J. 2022; 1(1): 1-7.
  • 7. Naren G, Guo J, Bai Q, Fan N, Nashun B. Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Rev Mol Med. 2022; 24: e9. DOI: 10.1017/erm.2022.3.
  • 8. Pandi A, Kalappan VM. Pharmacological and therapeutic applications of sinapic acid-an updated review. Mol Biol Rep. 2021; 48(4): 3733-3745. DOI: 10.1007/s11033-021-06367-0.
  • 9. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res. 2013; 36(5): 608-618. DOI: 10.1007/s12272-013-0033-6.
  • 10. Chen C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid Med Cell Longev. 2016; 2016: 3571614. DOI: 10.1155/2016/3571614.
  • 11. Rezaei S, Hosseinimehr SJ, Zargari M, Malekshah AK, Mirzaei M, Amiri FT. Protective effects of sinapic acid against cyclophosphamide-induced testicular toxicity via inhibiting oxidative stress, caspase-3 and NF-kB activity in BALB/c mice. Andrologia. 2021; 53(10): e14196. DOI: 10.1111/and.14196.
  • 12. Ansari MA. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother. 2017; 93: 646-653. DOI: 10.1016/j.biopha.2017.06.085.
  • 13. Raish M, Ahmad A, Ahmad Ansari M, et al. Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomed Pharmacother. 2018; 108: 224-231. DOI: 10.1016/j.biopha.2018.09.032.
  • 14. Zhang S, Liu Y, Xiang D, et al. Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed Pharmacother. 2018; 106: 910-916. DOI: 10.1016/j.biopha.2018.07.029.
  • 15. Shahmohamady P, Eidi A, Mortazavi P, Panahi N, Minai-Tehrani D. Effect of sinapic acid on memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pol J Pathol. 2018; 69(3): 266-277. DOI: 10.5114/pjp.2018.79546.
  • 16. Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. The effects of sinapic acid on the development of metabolic disorders induced by estrogen deficiency in rats. Oxid Med Cell Longev. 2018; 2018: 9274246. DOI: 10.1155/2018/9274246.
  • 17. Demir EA, Mentese A, Livaoglu A, Alemdar NT, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023; 46(1): 97-103. DOI: 10.1080/01480545.2021.2011312.
  • 18. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-278. DOI: 10.1016/0003-2697(78)90342-1.
  • 19. Demir S, Kazaz IO, Aliyazicioglu Y, et al. Effect of ethyl pyruvate on oxidative state and endoplasmic reticulum stress in a rat model of testicular torsion. Biotech Histochem. 2020; 95(4): 317-322. DOI: 10.1080/10520295.2019.1695947.
  • 20. Al-Asmari AK, Khan AQ, Al-Qasim AM, Al-Yousef Y. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by modulating the expression of inflammatory mediators. Toxicol Rep. 2015; 2: 908-916. DOI: 10.1016/j.toxrep.2015.06.006.
  • 21. Liu JH, Hsieh CH, Liu CY, Chang CW, Chen YJ, Tsai TH. Anti-inflammatory effects of Radix Aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. J Ethnopharmacol. 2021; 271: 113912. DOI: 10.1016/j.jep.2021.113912.
  • 22. Demir EA, Demir S, Turkmen N, Turan I. The effect of Rosa pimpinellifolia extract on the proliferation of human tumor cells. KSU J Agric Nat. 2021; 24(6): 1170-1176. DOI: 10.18016/ksutarimdoga.vi.848137.
  • 23. Aliyazicioglu Y, Demir S, Yaman SO, et al. Phytochemical analysis of Dorycnium pentaphyllum and its antiproliferative effect on cervix cancer cells. KSU J Agric Nat. 2019; 22(Suppl 2): 365-373. DOI: 10.18016/ksutarimdoga.vi.579938.
  • 24. Turan I, Demir S, Aliyazicioglu R, et al. Dimethyl sulfoxide extract of Dianthus carmelitarum induces S phase arrest and apoptosis in human colon cancer cells. Nutr Cancer. 2019; 71(7): 1181-1188. DOI: 10.1080/01635581.2019.1598563.
  • 25. Arab HH, Salama SA, Maghrabi IA. Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell Physiol Biochem. 2018; 46(4): 1628-1642. DOI: 10.1159/000489210.
  • 26. Bin Jardan YA, Ansari MA, Raish M, et al. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. Biomed Res Int. 2020; 2020: 3921796. doi:10.1155/2020/3921796.
  • 27. Demir S, Kazaz IO, Kerimoglu G, et al. Astaxanthin protects testicular tissue against torsion/detorsion-induced injury via suppressing endoplasmic reticulum stress in rats. J Invest Surg. 2022; 35(5): 1044-1049. DOI: 10.1080/08941939.2021.1995540.
  • 28. Demir EA, Mentese A, Kucuk H, Alemdar NT, Demir S. p-Coumaric acid alleviates cisplatin-induced ovarian toxicity in rats. J Obstet Gynaecol Res. 2022; 48(2): 411-419. DOI: 10.1111/jog.15119.
  • 29. Rehman MU, Ali N, Rashid S, et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: Probable role of oxidative and inflammatory markers. Pharmacol Rep. 2014; 66(6): 1050-1059. DOI: 10.1016/j.pharep.2014.06.004.
  • 30. Rashid S, Ali N, Nafees S, Ahmad ST, Hasan SK, Sultana S. Abrogation of 5-flourouracil induced renal toxicity by bee propolis via targeting oxidative stress and inflammation in Wistar rats. J Pharm Res. 2013; 7(2): 189-194. DOI: 10.1016/j.jopr.2013.03.003.
  • 31. Singh HP, Singh TG, Singh R. Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. J Pharm Bioallied Sci. 2020; 12(2): 146-154. DOI: 10.4103/jpbs.JPBS_220_19.
  • 32. Ahmad A, Alkharfy KM, Bin Jardan YA, et al. Sinapic acid mitigates methotrexate-induced hepatic injuries in rats through modulation of Nrf-2/HO-1 signaling. Environ Toxicol. 2021; 36(7): 1261-1268. DOI: 10.1002/tox.23123.
  • 33. Zeng D, Wang Y, Chen Y, et al. Angelica polysaccharide antagonizes 5-FU-induced oxidative stress injury to reduce apoptosis in the liver through Nrf2 pathway. Front Oncol. 2021; 11: 720620. DOI: 10.3389/fonc.2021.720620.
  • 34. Raish M, Shahid M, Bin Jardan YA, et al. gastroprotective effect of sinapic acid on ethanol-induced gastric ulcers in rats: Involvement of Nrf2/HO-1 and NF-κB signaling and antiapoptotic role. Front Pharmacol. 2021; 12: 622815. DOI: 10.3389/fphar.2021.622815.
  • 35. Shahid M, Raish M, Ahmad A, et al. Sinapic acid ameliorates acetic acid-induced ulcerative colitis in rats by suppressing inflammation, oxidative stress, and apoptosis. Molecules. 2022; 27(13): 4139. DOI: 10.3390/molecules27134139.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Selim Demir 0000-0002-1863-6280

Ahmet Mentese 0000-0003-2036-5317

Ayten Livaoglu 0000-0001-9168-6113

Elif Ayazoglu Demir 0000-0001-7188-2176

Nihal Türkmen Alemdar 0000-0002-8913-8692

Yüksel Aliyazıcıoğlu 0000-0001-9474-4307

Erken Görünüm Tarihi 30 Mayıs 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 19 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 2

Kaynak Göster

AMA Demir S, Mentese A, Livaoglu A, Ayazoglu Demir E, Türkmen Alemdar N, Aliyazıcıoğlu Y. Therapeutic Effect of Sinapic Acid against 5-Fluorouracil-Induced Oxidative Stress and Inflammation in Rat Ovarium: An Experimental Approach. Farabi Med J. Haziran 2023;2(2):1-7. doi:10.59518/farabimedj.1221397

*Dergiye gönderilecek yazılar aşağıda verilen örnek dosyalara göre hazırlanmalıdır. Dergi formatına uygun hazırlanmayan yazılar Yazar(lar)a iade edilecektir.

1. ÖZGÜN MAKALE ŞABLONU/ORIJINAL ARTICLE TEMPLATE

2. OLGU SUNUMU ŞABLONU/CASE REPORT TEMPLATE

3. DERLEME ŞABLONU/REVİEW TEMPLATE

4. BAŞLIK SAYFASI/TİTLE PAGE

5. TELİF HAKKI TRANSFER FORMU/COPYRİGHT TRANSFER FORM

6. KAPAK YAZISI /COVER LETTER

**Uluslararası Tıp Dergileri Editörler Kurulu (ICMJE) yönergesi