Araştırma Makalesi
BibTex RIS Kaynak Göster

Kesit alan geometri etkisinin PEM yakıt hücresinin performansı üzerine incelenmesi

Yıl 2021, , 42 - 49, 31.12.2021
https://doi.org/10.52702/fce.993508

Öz

Bu çalışmada, düşük sıcaklıklarda çalışan tek kanallı bir proton değişim membranlı yakıt hücresi modellenmiştir. Hazırlanan model deneysel verilerle karşılaştırılmış ve doğruluğu kanıtlanmıştır. Bu model kullanılarak, kanal yüksekliği sabitken kanal genişliğindeki değişimin hücre performansına etkisi ve kanal kesit alanı sabitken kanal geometrisindeki değişim araştırılmıştır. Reaktantın difüzyon tabakası ile temas ettiği alanın büyütülmesinin performans artışı sağladığı tespit edilmiştir. Ancak düşük voltajlarda çalışırken taban açısı ve kanal genişliğinin artmasıyla artan konsantrasyon kayıplarının azaldığı gözlemlenmiştir.

Destekleyen Kurum

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

BAP-2017-100 & BAP 2017-101

Kaynakça

  • [1] A. C. Turkmen, C. Celik, “The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells,” Fuel, 222, pp. 465-474, 2018.
  • [2] A. C. Turkmen, “Determination of thermal conductivity coefficient in gas diffusion layers and development of the nonisothermal model of proton exchange membrane fuel cell,” Master thesis, Kocaeli University, Turkey, 2018.
  • [3] D. H. Ahmed, H. J. Sung, “Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density,” Journal of Power Sources, 162(1), pp. 327-339, 2006.
  • [4] I. Khazaee, “Experimental investigation and numerical comparison of the performance of a proton exchange membrane fuel cell at different channel geometry,” Heat and Mass Transfer, 51, pp. 1177–1187, 2015
  • [5] I. Khazaee, “Improvement the equation of polarization curve of a proton exchange membrane fuel cell at different channel geometry, Heat and Mass Transfer, 51, pp. 1681–1689, 2015.
  • [6] I. Khazaee, H. Sabadbafan, “Numerical study of changing the geometry of the flow field of a PEM fuel cell,” Heat and Mass Transfer, 52, pp. 993–1003, 2015.
  • [7] X. D. Wang, G. Lu, Y. Y. Duan, and D. J. Lee, “Numerical analysis on performances of polymer electrolyte membrane fuel cells with various cathode flow channel geometries,” International Journal of Hydrogen Energy, 37(20), pp. 15778-15786, 2012.
  • [8] Z. Harun, A. Etminan, “Numerical Simulation of a Proton Exchange Membrane (PEM) Fuel Cell with Rectangular and Triangular Cross-Section Area Channels,” The International Journal of Advanced Technology, 9(4), pp. 282-288, 2020.
  • [9] X. D. Wang, Y. Y. Duan, W. M. Yan, and X. F. Peng, “Effects of flow channel geometry on cell performance for PEM fuel cells with parallel and interdigitated flow fields,” Computational Thermal Sciences, 53(16), pp. 5334-5343, 2008.
  • [10] A. Mohammedi, S. Youcef, B. H. Moussa, “3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels,” Fuel, 263, pp. 1167-1195, 2019.
  • [11] Q. Yan, H. Toghiani, H. Causey, “Steady-state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes,” J Power Sources, 161, pp. 492-502, 2006.

Investigation of the cross-section area geometry effect on the performance of PEM fuel cell

Yıl 2021, , 42 - 49, 31.12.2021
https://doi.org/10.52702/fce.993508

Öz

In this study, a proton exchange membrane fuel cell operating at low temperatures with a single channel is modeled. The prepared model has been compared with experimental data and its accuracy has been proved. Using this model, the impact of the change of the channel width on the cell performance with the channel height being constant and the change of the channel geometry with the channel cross-sectional area being constant was investigated. It has been found that the enlargement of the area where the reactant contacts the diffusion layer provides an increase in performance. However, when working at low voltages, it has been observed that increasing concentration losses decrease with increasing base angle and channel width.

Proje Numarası

BAP-2017-100 & BAP 2017-101

Kaynakça

  • [1] A. C. Turkmen, C. Celik, “The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells,” Fuel, 222, pp. 465-474, 2018.
  • [2] A. C. Turkmen, “Determination of thermal conductivity coefficient in gas diffusion layers and development of the nonisothermal model of proton exchange membrane fuel cell,” Master thesis, Kocaeli University, Turkey, 2018.
  • [3] D. H. Ahmed, H. J. Sung, “Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density,” Journal of Power Sources, 162(1), pp. 327-339, 2006.
  • [4] I. Khazaee, “Experimental investigation and numerical comparison of the performance of a proton exchange membrane fuel cell at different channel geometry,” Heat and Mass Transfer, 51, pp. 1177–1187, 2015
  • [5] I. Khazaee, “Improvement the equation of polarization curve of a proton exchange membrane fuel cell at different channel geometry, Heat and Mass Transfer, 51, pp. 1681–1689, 2015.
  • [6] I. Khazaee, H. Sabadbafan, “Numerical study of changing the geometry of the flow field of a PEM fuel cell,” Heat and Mass Transfer, 52, pp. 993–1003, 2015.
  • [7] X. D. Wang, G. Lu, Y. Y. Duan, and D. J. Lee, “Numerical analysis on performances of polymer electrolyte membrane fuel cells with various cathode flow channel geometries,” International Journal of Hydrogen Energy, 37(20), pp. 15778-15786, 2012.
  • [8] Z. Harun, A. Etminan, “Numerical Simulation of a Proton Exchange Membrane (PEM) Fuel Cell with Rectangular and Triangular Cross-Section Area Channels,” The International Journal of Advanced Technology, 9(4), pp. 282-288, 2020.
  • [9] X. D. Wang, Y. Y. Duan, W. M. Yan, and X. F. Peng, “Effects of flow channel geometry on cell performance for PEM fuel cells with parallel and interdigitated flow fields,” Computational Thermal Sciences, 53(16), pp. 5334-5343, 2008.
  • [10] A. Mohammedi, S. Youcef, B. H. Moussa, “3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels,” Fuel, 263, pp. 1167-1195, 2019.
  • [11] Q. Yan, H. Toghiani, H. Causey, “Steady-state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes,” J Power Sources, 161, pp. 492-502, 2006.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Anil Can Türkmen 0000-0002-3916-2854

Gulsen Asadova Bu kişi benim

İsmet Tıkız 0000-0003-4477-799X

Veli Çelik

Doç. Dr. Cenk Çelik

Proje Numarası BAP-2017-100 & BAP 2017-101
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Türkmen, A. C., Asadova, G., Tıkız, İ., Çelik, V., vd. (2021). Investigation of the cross-section area geometry effect on the performance of PEM fuel cell. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, 9(1), 42-49. https://doi.org/10.52702/fce.993508
AMA Türkmen AC, Asadova G, Tıkız İ, Çelik V, Çelik DDC. Investigation of the cross-section area geometry effect on the performance of PEM fuel cell. FCE Journal. Aralık 2021;9(1):42-49. doi:10.52702/fce.993508
Chicago Türkmen, Anil Can, Gulsen Asadova, İsmet Tıkız, Veli Çelik, ve Doç. Dr. Cenk Çelik. “Investigation of the Cross-Section Area Geometry Effect on the Performance of PEM Fuel Cell”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 9, sy. 1 (Aralık 2021): 42-49. https://doi.org/10.52702/fce.993508.
EndNote Türkmen AC, Asadova G, Tıkız İ, Çelik V, Çelik DDC (01 Aralık 2021) Investigation of the cross-section area geometry effect on the performance of PEM fuel cell. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 9 1 42–49.
IEEE A. C. Türkmen, G. Asadova, İ. Tıkız, V. Çelik, ve D. D. C. Çelik, “Investigation of the cross-section area geometry effect on the performance of PEM fuel cell”, FCE Journal, c. 9, sy. 1, ss. 42–49, 2021, doi: 10.52702/fce.993508.
ISNAD Türkmen, Anil Can vd. “Investigation of the Cross-Section Area Geometry Effect on the Performance of PEM Fuel Cell”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi 9/1 (Aralık 2021), 42-49. https://doi.org/10.52702/fce.993508.
JAMA Türkmen AC, Asadova G, Tıkız İ, Çelik V, Çelik DDC. Investigation of the cross-section area geometry effect on the performance of PEM fuel cell. FCE Journal. 2021;9:42–49.
MLA Türkmen, Anil Can vd. “Investigation of the Cross-Section Area Geometry Effect on the Performance of PEM Fuel Cell”. Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, c. 9, sy. 1, 2021, ss. 42-49, doi:10.52702/fce.993508.
Vancouver Türkmen AC, Asadova G, Tıkız İ, Çelik V, Çelik DDC. Investigation of the cross-section area geometry effect on the performance of PEM fuel cell. FCE Journal. 2021;9(1):42-9.