Elektrikli Araçlarda Batarya Yangınlarına Genel Bakış
Yıl 2023,
Cilt: 11 Sayı: 1, 29 - 40, 31.12.2023
Mehmet İhsan Karamangil
,
Ali Sürmen
,
Merve Tekin
Öz
Trafiğe kayıtlı hibrit ve elektrikli taşıt sayısı hem dünyada hem de ülkemizde her geçen gün artmaktadır. Kirletici emisyon üretmemeleri, işletme maliyetlerinin düşük olması, sessiz çalışmaları gibi birçok avantaj sunan elektrikli araçlar bazı problemleri de birlikte getirmektedir. Bunlardan bir tanesi de yangın riskleri ve yangın sırasında çıkan ısıl yüklerin fazla olmasıdır. Klasik araçlarda çıkan yangınlar ve bu yangınlara müdahale yöntemi bilinmekle birlikte elektrikli bir araç yangınına nasıl müdahale edilir, kaza yönetimi nasıl olmalıdır en azından ülkemiz için henüz tam olarak netleşmemiş bir konudur. Bu çalışmada sırasıyla elektrikli bir araçta batarya yangınlarının çıkış sebepleri, farklı batarya türlerinin yangına etkisi ve yangına müdahale yöntemleri anlatılacaktır. Lityum iyon bataryalarda anot malzemesi olarak grafit yerine Li4Ti5O12 (Lityum Titanat Oksit) veya başka metaller (Si, Sn, Sb, Ge vs..) ve bu metallerin lityum ile alaşım yapabilen bileşenlerinin kullanımı, katot malzemesi olarak LCO (Lityum Kobalt Oksit) veya NCM (Nikel Kobalt Mangan) yerine LiFePO4 (Lityum Demir Fosfat) kullanımı, elektrolit malzemesi olarak daha kararlı lityum tuzları, elektrolit katkı maddeleri ve yanıcı olmayan solvent kullanımının yangın riskini azalttığı görülmüştür.
Teşekkür
Bu makale 8-11 Eylül 2022 tarihlerinde düzenlenen 16. Uluslararası Yanma Sempozyumu'nda (INCOS 2022) bildiri olarak sunulmuştur.
Kaynakça
- [1]https://www.indyturk.com/node/394696/ekonomi%CC%87
- [2]https://tr.motor1.com/news/127753/olumcul-tesla-model-s-kazasinda-cikan-yangin-guvenlik-konusunda-endiseleri-arttirdi/
- [3] Sezer Aslan “Elektrikli Araçlar ve Yangın Önlemleri”, Yangın ve Güvenlik Dergisi, s.46-49, Temmuz - Ağustos, 2021.
- [4] https://afdc.energy.gov/vehicles/electric_maintenance.html
- [5] Wang Z, Chen S, He X, Wang C, Zhao D. A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries. J Energy Storage Vol. 45, 2022.
- [6] Parhizi M, Jain A, Kilaz G, Ostanek JK. Accelerating the numerical solution of thermal runaway in Li-ion batteries. J Power Sources Vol. 538, 2022.
- [7] Duh Y-S, Sun Y, Lin X, Zheng J, Wang M, Wang Y, Lin X, Jiang X, Zheng Z, Zheng S, Yu G. Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review. J Energy Storage Vol. 41, 2021.
- [8] Un C, Aydın K. Thermal Runaway and Fire Suppression Applications for Different Types of Lithium Ion Batteries. Vehicles Vol.3, pp. 480–497, 2021.
- [9] Wang H, Xu H, Zhao Z, Wang Q, Jin C, Li Y, Sheng J, Li K, Du Z, Xu C, Feng X. An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries. Appl Therm Eng Vol. 211, 2022
- [10] Dubaniewicz TH, Barone TL, Brown CB, Thomas RA. Comparison of thermal runaway pressures within sealed enclosures for nickel manganese cobalt and iron phosphate cathode lithium-ion cells. J Loss Prev Process Ind Vol. 76, 2022.
- [11] Jia Y, Darst J, Surelia A, Delafuente D, Finegan DP, Xu J. Deformation and fracture behaviors of cylindrical battery shell during thermal runaway. J Power Sources Vol. 539, 2022.
- [12] Wang Z, Jiang X, Ke W, Wang W, Zhang S, Zhou B. Effect of lithium-ion battery diameter on thermal runaway propagation rate under one-dimensional linear arrangement. Therm Sci Eng Prog Vol. 31, 2022.
- [13] Liu J, Wang Z, Bai J, Gao T, Mao N. Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery. Appl Therm Eng Vol. 212, 2022.
- [14] Liu J, Huang Z, Sun J, Wang Q. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. J Power Sources Vol. 526, 2022.
- [15] Liu J, Wang Z, Bai J. Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery. J Energy Chem Vol. 70, pp. 531–541, 2022.
- [16] Jin C, Sun Y, Wang H, Zheng Y, Wang S, Rui X, Xu C, Feng X, Wang H, Ouyang M. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl Energy Vol.312, 2022.
- [17] Liu L, Zhang L, Chen Y. Mitigating battery thermal runaway through mild combustion Peng Zhao. Chem Eng J Adv Vol. 9, 2022.
- [18] Xu B, Lee J, Kwon D, Kong L, Pecht M. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew Sust Energ Rev Vol. 150, 2021.
- [19] McKerracher RD, Guemez JG, Wills RGA, Sharkh SM and Kramer D. Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries. Adv Energy Sustainability Res Vol.2, 2021.
- [20] Zhang F, Feng X, Xu C, Jiang F, Ouyang M. Thermal runaway front in failure propagation of long-shape lithium-ion battery. Int J Heat Mass Transf Vol.182, 2022.
- [21] Chombo PV, Laoonual Y. A review of safety strategies of a Li-ion battery. J Power Sources Vol.478, 2020.
- [22] Liao Z, Zhang S, Li K, Zhang G, Habetler TG. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J Power Sources Vol.436, 2019.
- [23] Zhang S, Li S, Lu Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience Vol. 1, pp. 163–177, 2021.
- [24] Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater Vol. 31, pp. 195–220, 2020.
- [25] Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources Vol. 208, pp. 210–224, 2012.
- [26] Chow WK and Chow CL. Review On Electric Vehicle Fire Hazards Associated with Batteries, Combustibles and Smoke. Int J Automot Sci Technol Vol. 6(2), pp. 165-171, 2022.
- [27] Sun P, Bisschop R, Niu H, Huang X. A Review of Battery Fires in Electric Vehicles. Fire Technol Vol. 56, 2020.
- [28] Park Y, Ryu J and Ryou HS. Experimental Study on the Fire-Spreading Characteristics and Heat Release Rates of Burning Vehicles Using a Large-Scale Calorimeter. Energies Vol.12, 2019.
- [29] Dorsz A and Lewandowski M. Analysis of Fire Hazards Associated with the Operation of Electric Vehicles in Enclosed Structures. Energies Vol.15, 2022.
- [30] Cui Y, Cong B, Liu J, Qiu M and Han X. Characteristics and Hazards of Plug-In Hybrid Electric Vehicle Fires Caused by Lithium-Ion Battery Packs With Thermal Runaway. Front Energy Res Vol.10, 2022.
- [31] Krüger S, Hofmann A, Berger A and Gude N. Investigation of smoke gases and temperatures during car fire-large-scale and small-scale tests and numerical investigations. Fire and Mater Vol. 40, pp. 785–799, 2016.
- [32] Sturk D, Hoffmann L and Tidblad AA. Fire tests on e-vehicle battery cells and packs. Traffic Inj Prev Vol. 16, pp.159-164, 2015.
- [33] Kang S, Kwon M, Choi JY, Choi S. Full-scale fire testing of battery electric vehicles. Appl Energy Vol. 332, 2023.
- [34] Li H, Chen H, Sun J, Wang Q, Peng W and Yang X. Full-scale experimental study on the combustion behavior of lithium ion battery pack used for electric vehicle. Fire Technol Vol.56, pp.2545–2564, 2020.
- [35] Wang Q, Mao B, Stoliarov SI, Sun J. “A review of lithium ion battery failure mechanisms and fire prevention strategies” Progress in Energy and Combustion Science vol. 73, pp. 95–131, 2019.
- [36] Nishi Y. The development of lithium ion secondary batteries. Chem Rec Vol. 1, pp. 406–13, 2001.
- [37] Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater Vol. 20,pp. 1160–5, 2008.
- [38] Noh H-J, Youn S, Yoon CS, Sun Y-K. Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O 2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources Vol. 233, pp. 121–30, 2013.
- [39] Wang Q, Jiang L, Yu Y, Sun J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy Vol. 55, pp. 93–114, 2018.
- [40] Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ Vol. 1, pp. 18–42, 2016.
- [41] Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M. Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage. J Power Sources Vol. 196, pp. 9743–50, 2011.
- [42] Li F, Gong Y, Jia G, Wang Q, Peng Z, Fan W, et al. A novel dual-salts of LiTFSI and LiODFB in LiFePO4 -based batteries for suppressing aluminum corrosion and improving cycling stability. J Power Sources Vol. 295 pp. 47–54, 2015.
- [43] Zeng Z, Wu B, Xiao L, Jiang X, Chen Y, Ai X, et al. Safer lithium ion batteries based on nonflammable electrolyte. J Power Sources Vol. 279, pp. 6–12, 2015.
- [44] Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci Vol. 5, pp. 5271–80, 2012.
- [45] Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, et al. Study of the fire behav- ior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources Vol. 285, pp. 80–9, 2015.
- [46] Zhang H, Zhou MY, Lin CE, Zhu BK. Progress in polymeric separators for lithium ion batteries. RSC Adv Vol. 5, pp. 89848–60, 2015.
- [47] Orendorff CJ. The role of separators in lithium-ion cell safety. Electrochem Soc Interface Vol. 21, pp. 61–5, 2012.
- [48] Doughty DH, Roth EP. A general discussion of Li ion battery safety. Electrochem Soc Interface Vol. 21, pp. 37–44, 2012.
- [49]https://ul.org/what-we-do/electrochemical-safety/getting-started-electrochemical-safety/what-thermal-runaway
- [50] https://www.youtube.com/watch?v=G5-gdx3IleU
- [51]https://www.upsbatterycenter.com/blog/lithium-plating/
- [52] https://www.youtube.com/watch?v=VWMfeseybt4
- [53] Wang Q, Jiang L, Yu Y, Sun J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy Vol. 55, pp. 93–114, 2018.
- [54] Zhao L, Watanabe I, Doi T, Okada S, Yamaki J-I. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batter- ies. J Power Sources Vol. 161, pp.1275–80, 2006.
- [55] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources Vol. 68, pp. 91–8, 1997.
- [56] Richard M, Dahn J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc Vol. 146, pp. 2068–77, 1999.
- [57] Yang H, Bang H, Amine K, Prakash J. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J Electrochem Soc Vol. 152, pp. A73-A9, 2005.
- [58] Liu X, Ren D, Hsu H, Feng X, Xu GL, Zhuang M, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule Vol. 2, pp. 2047–64, 2018.
- [59] Jiang J, Dahn JR. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1 Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun Vol.6, pp. 39–43, 2004.
- [60] Biensan P, Simon B, Peres J, De Guibert A, Broussely M, Bodet J, et al. On safety of lithium-ion cells. J Power Sources Vol. 81, pp. 906–12, 1999.
- [61] Wang Y, Jiang J, Dahn J. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3 )O2, Li(Ni0.8Co0.15Al0.05 )O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun Vol. 9, pp. 2534–40, 2007.
- [62] Huang Y, Lin YC, Jenkins DM, Chernova NA, Chung Y, Radhakrishnan B, et al. Thermal stability and reactivity of cathode materials for Li-ion batteries. ACS Appl Mater Interfaces Vol. 8, pp. 7013–21, 2016.
- [63] Zhang Z, Fouchard D, Rea J. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J Power Sources Vol. 70, pp. 16–20, 1998.
- [64] Wang Q, Sun J, Chen C. Thermal stability of delithiated LiMn2O4 with elec- trolyte for lithium-ion batteries. J Electrochem Soc Vol. 154, pp. A263-A7, 2007.
- [65] Martha SK, Haik O, Zinigrad E, Exnar I, Drezen T, Miners JH, et al. On the thermal stability of olivine cathode materials for lithium-ion batteries. J Elec- trochem Soc Vol. 158, pp. A1115-A22, 2011.
- [66] Joachin H, Kaun TD, Zaghib K, Prakash J. Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J Electrochem Soc Vol. 156, pp. A401-A6, 2009.
- [67] Jiang J, Dahn JR. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun Vol. 6, pp. 39–43, 2004.
- [68] MacNeil D, Dahn J. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc Vol. 148, pp. A1205-A10, 2001.
- [69] Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y. Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J Electrochem Soc Vol. 149, pp. A401-A6, 2002.
- [70] Ping P, Kong D, Zhang J, Wen R, Wen J. Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating. J Power Sources Vol. 398, pp. 55–66, 2018.
- [71] Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater Vol. 10, pp. 246–67, 2017.
- [72] Gong J, Wang Q, Sun J. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries. Thermochim Acta Vol. 655, pp. 176–80, 2017.
- [73] Bak SM, Hu E, Zhou Y, Yu X, Senanayake SD, Cho SJ, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces Vol. 6, pp. 22594–601, 2014.
- [74] Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy Vol. 183, pp. 659–73, 2016.
- [75] Röder P, Baba N, Wiemhöfer HD. A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33 ]O2/LiMn2O4 - based lithium ion cell by accelerating rate and differential scanning calorimetry. J Power Sources Vol. 248, pp. 978–87, 2014.
- [76] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources Vol. 113, pp. 81–100, 2003.
- [77] Röder P, Baba N, Friedrich K, Wiemhöfer H-D. Impact of delithiated Li 0 FePO 4 on the decomposition of LiPF6 -based electrolyte studied by accelerating rate calorimetry. J Power Sources Vol. 236, pp.151–7, 2013.
- [78] Ping P, Wang Q, Huang P, Sun J, Chen C. Thermal behaviour analysis of lithi- um-ion battery at elevated temperature using deconvolution method. Appl Energy Vol. 129, pp. 261–73, 2014.
- [79] Electric Vehicle Safety Guide, China Association of Automobile Manufacturers (CAAM), China Automotive Power Battery Industry Innovation Alliance, China Electric Vehicle Charging Infrastructure Promotion Alliance, 2019.