Derleme
BibTex RIS Kaynak Göster

Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi

Yıl 2022, Cilt: 34 Sayı: 2, 149 - 160, 30.09.2022

Öz

Günümüzde fosil kaynaklar, özellikle kimya ve yakıt endüstrileri için hala en önemli kimyasal karbon iskeleti kaynağıdır ve giderek azalmaktadır. Bu durum araştırmacıları yenilenebilir kaynakların çeşitli yakıtlara, kimyasallara ve malzemelere dönüştürülmesi için yeni ekonomik süreçler geliştirmeye zorlamıştır. Son dönemlerdeki araştırmalara bakıldığında, biyo-temelli hammaddelerden bazı platform kimyasallarının birlikte üretiminin girdi maliyetlerinin düşürülmesi bakımından büyük önem arz ettiği görülmektedir. Platform kimyasallarının içerisinde özellikle Glukonik asit (GA) ve 5-hidroksimetilfurfural (HMF)’ın birlikte üretimi gelecekte sürdürülebilir bir kimya endüstrisi için büyük önem taşımaktadır. GA, glikozun oksidasyonu sonucu açığa çıkan, ticari olarak en fazla üretilen organik asitlerden biridir. Kimya, farmasötik, yiyecek, içecek, tekstil ve deterjan endüstrilerinde yaygın olarak kullanılmaktadır. HMF, gelecek vaat eden biyoyakıtların yanı sıra farklı faydalı kimyasallara dönüştürülebilen önemli bir başlangıç maddesidir. Ayrıca, polimerler, farmasötikler, kimyasallar ve yakıtlar için kullanılan çok yönlü ve işlevsel bir ara maddedir. Bu derleme, halihazırda farklı tesis ve hammaddelerle üretilen GA ve HMF’nin aynı biyokütle kaynağından daha düşük maliyetlerle tek proseste birlikte üretim çalışmalarının incelenmesinin yanında kimya endüstrisindeki önemi, özellikleri ve uygulamaları hakkında bir inceleme sunmaktadır.

Kaynakça

  • [1] Ma, S., Li, W., Zhang, S., Ge, D., Yu, J., Shen, X., 2015. Influence of sodium gluconate on the performance and hydration of Portland cement. Constr. Build. Mater. 91, 138–144.
  • [2] Chun, B., Dair, B., Macuch, P., Wiebe, D., Porteneuve, C., Jeknavorian, A., 2006. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl. Biochem. Biotechnol. 131, 645–658.
  • [3] Zhang, H., Liu, G., Zhang, J., and Bao, J. (2016). Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Bioresource Technology, 219, 123-131.
  • [4] Zhou, X., & Xu, Y. (2019). Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresource technology, 282, 81-87.
  • [5] Mika, L. T., Csefalvay, E., and Nemeth, A. (2018). Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chemical reviews, 118(2), 505-613. Duman M, Gürbüz AC. 3D imaging for ground-penetrating radars via dictionarydimension reduction. Turk J Elec Eng & Comp Sci 2015; 23(5): 1242-1256.
  • [6] Singh, O. V., and Kumar, R. 2007. “Biotechnological production of gluconic acid: future implications”, Applied microbiology and biotechnology, 75(4), 713-722.
  • [7] Zhang, Z., and Huber, G. W. (2018). Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 47(4), 1351-1390.
  • [8] Kirimura, K., and Yoshioka, I. (2019). Gluconic and itaconic acids.
  • [9] Ramachandran, S., Fontanille, P., Pandey, A., Larroche, C. 2006. “Gluconic acid: Properties, applications and microbial production”, Food Technology and Biotechnology, 44(2),185-195.
  • [10] Roehr, M., Kubicek, C. P., Komínek, J. 1996. “Gluconic acid”, Biotechnology: Products of Primary Metabolism, 347-362.
  • [11] Hustede H., Haberstroth H.J., Schinzig E. 1989. “Gluconic acid”, Ullmann’s Encyclopedia of İndustrial Chemistry, 449–56.
  • [12] Gehring, M., Vogel, D., Tennhardt, L., Weltin, D., and Bilitewski, B. (2004). Bisphenol A contamination of wastepaper, cellulose and recycled paper products. WIT Transactions on Ecology and the Environment, 78.
  • [13] Saha, B., and Abu-Omar, M. M. 2014. “Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents”, Green Chemistry, 16(1), 24-38.
  • [14] Wu, H., Huang, T., Cao, F., Zou, Q., Wei, P., Ouyang, P. 2017. “Co-production of HMF and gluconic acid from sucrose by chemo-enzymatic method”, Chemical Engineering Journal, 327, 228-234.
  • [15] Ishag, O. A. O., Mohammed, A. M., Ali, M. M., Omer, A. B. (2019). Catalytic Conversion of Sugarcane Bagasse into 5-Hydroxymethylfurfural. International Research Journal of Pure and Applied Chemistry, 1-9.
  • [16] Hustede H., Haberstroth H.J., Schinzig E. 1989. “Gluconic acid”, Ullmann’s Encyclopedia of İndustrial Chemistry, 449–56.
  • [17] Ramachandran, S., Nair, S., Larroche, C., Pandey, A. 2017. “Gluconic Acid”, In Current Developments in Biotechnology and Bioengineering, 577-599.
  • [18] https://www.marketwatch.com/press-release/global-gluconic-acid-market-size-2022-analysis-by-recent-development-geographical-regions-trends-and-forecast-to-2028-research-report-by-absolute-reports-2022-03-10 Erişim Tarihi: 15.05.2022
  • [19] Canete-Rodriguez, A. M., Santos-Duenas, I. M., Jimenez-Hornero, J. E., Ehrenreich, A., Liebl, W., Garcia-Garcia, I. 2016. “Gluconic acid: properties, production methods and applications—an excellent opportunity for agro-industrial by-products and waste bio-valorization”, Process Biochemistry, 51(12), 1891-1903.
  • [20] Roehr, M., Kubicek, C. P., Komínek, J. 1996. “Gluconic acid”, Biotechnology: Products of Primary Metabolism, 347-362.
  • [21] Deller, K., Krause, H., Peldszus, E., Despeyroux, B. 1992. U.S. Patent No. 5,132,452. Washington, DC: U.S. Patent and Trademark Office.
  • [22] Schinzing, E., Hustede, H. and Haberstroth, H. 1989. “Gluconic acid”, ULLMANNS Encyclopedia of Industrial Chemistry, 449, 456.
  • [23] Tanyıldızı, M.Ş., Altundoğan, H.S.ve Çelik, V. 2020. “Glukonik Asit Üretim yolağı Aktifleştirilmiş ve Endojenik Oksijen Kaynağı sağlanmış Rekombinant Suşlar Kullanılarak Glukonik Asit Üretimi”, TUBİTAK 1001 Ar-Ge Projesi Sonuç Raporu (117R003), Fırat Üniversitesi, Elazığ.
  • [24] Lockwood, L. B. 1975. “Organic acid production of acids”, Filamentous fungi, 1, 140-157.
  • [25] Purane, N. K., Sharma, S. K., Salunkhe, P. D., Labade, D. S., Tondlikar, M. M. 2012. “Gluconic acid production from golden syrup by Aspergillus niger strain using semiautomatic stirred-tank fermenter”, J. Microb. Biochem. Technol, 4, 92-95.
  • [26] Ahmed, K., Valeem, E. E., Mahmood, T. 2015. “Optimal cultural conditions for industrial enzyme production by using shaken flask technique of submerged fermentation”, FUUAST Journal of Biology, 5(1), 21-26.
  • [27] Roehr, M., Kubicek, C. P., and Komínek, J. 1983. “Gluconic acid”, Biotechnology: Products of Primary Metabolism, 347-362.
  • [28] Pal, P., Kumar, R.ve Banerjee, S. 2016. “Manufacture of gluconic acid: A review towards process intensification for green production”, Chemical Engineering and Processing Process Intensification, 104, 160-171.
  • [29] Singh, O. V., Jain, R. K., Singh, R. P. 2003. “Gluconic acid production under varying fermentation conditions by Aspergillus niger”, Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 78(2‐3), 208-212.
  • [30] Velizarov, S., and Beschkov, V. 1994. “Production of free gluconic acid by cells of Gluconobacter oxydans”, Biotechnology Letters, 16 (7), 715-720.
  • [31] Ano, Y., Shinagawa, E., Adachi, O., Toyama, H., Yakushi, T., Matsushita, K. 2011. “Selective, high conversion of d-glucose to 5-keto-d-gluoconate by Gluconobacter suboxydans”, Bioscience, biotechnology, and biochemistry, 75(3), 586-589.
  • [32] Sun, W. J., Yun, Q. Q., Zhou, Y. Z., Cui, F. J., Yu, S. L., Zhou, Q., Sun, L. 2013. “Continuous 2-keto-gluconic acid (2KGA) production from corn starch hydrolysate by Pseudomonas fluorescens AR4”, Biochemical engineering journal, 77, 97-102.
  • [33] Klasen, R., Bringer-Meyer, S., Sahm, H. 1995. “Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans”, Journal of bacteriology, 177(10), 2637-2643.
  • [34] Cardenas, L. Z., and Cardenas, B. Z. 2020. “Production of Organic Acids Via Fermentation of Sugars Generated from Lignocellulosic Biomass”, Lignocellulosic Biorefining Technologies, 203-246.
  • [35] Tarekegn, F., and Jabasingh, S. A. 2019. “Gluconic acid production from cane molasses using Aspergillus carneus”, Emerging Trends in Chemical Engineering, 6(3), 37-44.
  • [36] Chatterjee, S., Gangopadhyay, S., Patra, S., Chowdhury, S. P. 2016. “An overview of different approaches for sustainable production and convertibility of hydroxymethylfurfural”, IJRET, 5(1), 45-52.
  • [37] Zhang, Z., O'Hara, I. M., Rackemann, D. W., and Doherty, W. O. 2013. “Low temperature pretreatment of sugarcane bagasse at atmospheric pressure using mixtures of ethylene carbonate and ethylene glycol”, Green Chemistry, 15(1), 255-264.
  • [38] Menegazzo, F., Ghedini, E., Signoretto, M. 2018. “5-Hydroxymethylfurfural (HMF) production from real biomasses”, Molecules, 23(9), 2201.
  • [39] Mukherjee, A., Dumont, M. J., Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 72, 143-183.
  • [40] Mika, L. T., Csefalvay, E., Nemeth, A. 2018. “Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability”, Chemical reviews, 118(2), 505-613.
  • [41] Kong, Q. S., Li, X. L., Xu, H. J., & Fu, Y. (2020). Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 209, 106528.
  • [42] Steinbach, D., Kruse, A., Sauer, J. 2017. “Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review”, Biomass Conversion and Biorefinery, 7(2), 247-274.
  • [43] 43 Teong, S. P., Yi, G., Zhang, Y. 2014. “Hydroxymethylfurfural production from bioresources: past, present and future”, Green Chemistry, 16(4), 2015-2026.
  • [44] Rosatella, A. A., Simeonov, S. P., Frade, R. F., and Afonso, C. A. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754-793.
  • [45] van Putten, R. J., Van Der Waal, J. C., De Jong, E. D., Rasrendra, C. B., Heeres, H. J., de Vries, J. G. 2013. “Hydroxymethylfurfural, a versatile platform chemical made from renewable resources”, Chemical reviews, 113(3), 1499-1597.
  • [46] Souzanchi, S. 2016. “Catalytic Conversion of Fructose, Glucose and Industrial Grade Sugar Syrups to 5-Hydroxymethylfurfural, A Platform for Fuels and Chemicals”, Electronic Thesis and Dissertation Repository, 4070.
  • [47] Lin, C., Wu, H., Wang, J., Huang, J., Cao, F., Zhuang, W., and Ouyang, P. 2020. Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst”, Industrial & Engineering Chemistry Research, 59(10), 4358-4366.
  • [48] Motagamwala, A. H., Won, W., Sener, C., Alonso, D. M., Maravelias, C. T., and Dumesic, J. A. 2018. “Toward biomass-derived renewable plastics: Production of 2, 5-furandicarboxylic acid from fructose”, Science advances, 4(1), 9722.
  • [49] Pyo, S. H., Sayed, M., Hatti-Kaul, R. 2019. “Batch and Continuous Flow Production of 5-Hydroxymethylfurfural from a High Concentration of Fructose Using an Acidic Ion Exchange Catalyst”, Organic Process Research & Development, 23(5), 952-960.
  • [50] Sweygers, N., Alewaters, N., Dewil, R., Appels, L. 2018. “Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural”, Scientific reports, 8(1), 1-11.
  • [51] Peniston, Q. P. 1956. U.S. Patent No. 2,750,394. Washington, DC: U.S. Patent and Trademark Office.
  • [52] Zou, X., Zhu, C., Wang, Q., Yang, G. 2019. “Catalytic dehydration of hexose sugars to 5‐hydroxymethylfural”, Biofuels, Bioproducts and Biorefining, 13(1), 153-173.
  • [53] Rosatella, A. A., Simeonov, S. P., Frade, R. F., Afonso, C. A. 2011. “5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications”, Green Chemistry, 13(4), 754-793.
  • [54] Shamsul, N. S., Kamarudin, S. K., Rahman, N. A. 2018. “Study on the physical and chemical composition of agro wastes for the production of 5-hydroxymethylfurfural”, Bioresource technology, 247, 821-828.
  • [55] Sirianuntapiboon, S., Phothilangka, P., Ohmomo, S. 2004. “Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria”, Bioresource Technology, 92(1), 31-39.
  • [56] Arimi M.M., Zhang Y., Götz G., Kiriamiti K., Geißen S.U. 2014. Antimicrobial colorants in molasses distillery wastewater and their removal Technologies, International Biodeterioration and Biodegradation, 87, 34-43.
  • [57] Küçükaşık F., Kazak H., Güney D., Finore I., Poli A., Yenigün O., Öner E. T. 2011. Molasses as fermentation substrate for levan production by Halomonas sp., Applied Microbiology and Biotechnology, 89,6, 1729– 1740.
  • [58] Roukas T. 1998. Pretreatment of beet molasses to increase pullulan production, Process Biochemistry, 33,8, 805–810.
  • [59] Khorshidian, N., Shadnoush, M., Zabihzadeh Khajavi, M., Sohrabvandi, S., Yousefi, M., & Mortazavian, A. M. (2021). Fructose and high fructose corn syrup: are they a two-edged sword?. International Journal of Food Sciences and Nutrition, 72(5), 592-614.
  • [60] Akdağ, B. 2013. “Investigation of thermostable recombinant glucose isomerase production by sucrose utilizing Escherichia coli”, (M. Sc. Thesis. Middle East Technical University, Turkey).
  • [61] Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları. https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ Son erişim Tarihi: 10 Haziran 2022.
  • [62] Dashtban, M., Gilbert, A., and Fatehi, P. (2014). Recent advancements in the production of hydroxymethylfurfural. Rsc Advances, 4(4), 2037-2050.
  • [63] Pal, P., Kumar, R.ve Banerjee, S. 2016. “Manufacture of gluconic acid: A review towards process intensification for green production”, Chemical Engineering and Processing Process Intensification, 104, 160-171.
  • [64] Kumar, R., Vikramachakravarthi, D., and Pal, P. (2014). Production and purification of glutamic acid: A critical review towards process intensification. Chemical Engineering and Processing: Process Intensification, 81, 59-71.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm FBD
Yazarlar

Abdulkadir Gül 0000-0003-4879-6194

Muhammed Tanyıldızı 0000-0001-6456-1593

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 9 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 34 Sayı: 2

Kaynak Göster

APA Gül, A., & Tanyıldızı, M. (2022). Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi. Fırat Üniversitesi Fen Bilimleri Dergisi, 34(2), 149-160.
AMA Gül A, Tanyıldızı M. Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi. Fırat Üniversitesi Fen Bilimleri Dergisi. Eylül 2022;34(2):149-160.
Chicago Gül, Abdulkadir, ve Muhammed Tanyıldızı. “Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi”. Fırat Üniversitesi Fen Bilimleri Dergisi 34, sy. 2 (Eylül 2022): 149-60.
EndNote Gül A, Tanyıldızı M (01 Eylül 2022) Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi. Fırat Üniversitesi Fen Bilimleri Dergisi 34 2 149–160.
IEEE A. Gül ve M. Tanyıldızı, “Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi”, Fırat Üniversitesi Fen Bilimleri Dergisi, c. 34, sy. 2, ss. 149–160, 2022.
ISNAD Gül, Abdulkadir - Tanyıldızı, Muhammed. “Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi”. Fırat Üniversitesi Fen Bilimleri Dergisi 34/2 (Eylül 2022), 149-160.
JAMA Gül A, Tanyıldızı M. Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34:149–160.
MLA Gül, Abdulkadir ve Muhammed Tanyıldızı. “Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi”. Fırat Üniversitesi Fen Bilimleri Dergisi, c. 34, sy. 2, 2022, ss. 149-60.
Vancouver Gül A, Tanyıldızı M. Biyokütle Kaynaklarından Bazı Platform Kimyasallarının Birlikte Üretimi. Fırat Üniversitesi Fen Bilimleri Dergisi. 2022;34(2):149-60.