Araştırma Makalesi
BibTex RIS Kaynak Göster

Mn and Ti Co-doping of LiNiO2 to Improve Performance

Yıl 2024, Cilt: 3 Sayı: 3, 280 - 291, 31.10.2024
https://doi.org/10.62520/fujece.1459826

Öz

LiNiO2 (LNO) has high capacity but suffers from structural instability and capacity fade, which limits its practical use in lithium-ion batteries. This study proposes co-doping LNO with Mn and Ti (MnTi25) as a strategy to overcome these issues. MnTi25 was thoroughly characterized, revealing improved structural stability and significantly reduced cation mixing compared to pristine LNO. The half-cell performance of MnTi25 is noteworthy, exhibiting a capacity similar to the established 4% Mn-substituted ZoomWeMn4 standard, demonstrating efficient Li-ion extraction and insertion. Additionally, full-cell testing against a graphite anode shows that MnTi25 delivers a capacity almost identical to a commercial LNO-based material. This promising achievement highlights the effectiveness of co-doping in addressing LNO's limitations while preserving its high-capacity potential. This study demonstrates that MnTi25 can be a promising cathode material for high-performance lithium-ion batteries by tailoring the material's structure through co-doping.

Kaynakça

  • J. R. Dahn, U. von Sacken, and C. A. Michal, “Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure,” Sol. State Ion, vol. 44, no. 1–2, pp. 87–97, Dec. 1990.
  • C. S. Yoon, D. W. Jun, S. T. Myung, and Y. K. Sun, “Structural Stability of LiNiO2 Cycled above 4.2 v,” ACS Ener. Lett, vol. 2, no. 5, pp. 1150–1155, May 2017.
  • J. Xu et al., “Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2,” Chem. Comm., vol. 52, no. 22, pp. 4239–4242, Mar. 2016.
  • J. Xu et al., “Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries,” ACS Appl Mater Inter., vol. 8, no. 46, pp. 31677–31683, Nov. 2016.
  • J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, “Structure and electrochemistry of LixFeyNi1-yO2,” Sol. State Ion, vol. 61, no. 4, pp. 335–344, Jun. 1993.
  • T. Ohzuku, A. Ueda, and M. Kouguchi, “Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries,” J. Electr. Soc, vol. 142, no. 12, pp. 4033–4039, Dec. 1995.
  • A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmas, “Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials,” Sol. State Ion, vol. 90, no. 1–4, pp. 83–90, Sep. 1996.
  • H. J. Kweon, S. J. Kim, and D. G. Park, “Modification of LixNi1−yCoyO2 by applying a surface coating of MgO,” J Pow. Sour., vol. 88, no. 2, pp. 255–261, Jun. 2000.
  • H. Omanda, T. Brousse, C. Marhic, and D. M. Schleich, “Improvement of the Thermal Stability of LiNi0.8Co0.2 O 2 Cathode by a SiO x Protective Coating,” J. Electr. Soc, vol. 151, no. 6, p. A922, May 2004.
  • J. Cho, T.-J. Kim, J. Kim, M. Noh, and B. Park, “Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.2 O 2 Cathode Materials for a Li-Ion Cell,” J. Electr. Soc, vol. 151, no. 11, p. A1899, Oct. 2004.
  • H. Qian et al., “Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review,” Elect. Ener. Rev., vol. 5, no. 4, pp. 1–32, Nov. 2022.
  • T. F. Yi, X. Y. Li, H. Liu, J. Shu, Y. R. Zhu, and R. S. Zhu, “Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery,” Ion. (Kiel), vol. 18, no. 6, pp. 529–539, Jun. 2012.
  • M. Y. Song, C. K. Park, S. Do Yoon, H. R. Park, and D. R. Mumm, “Electrochemical properties of LiNi1−yMyO2 (M = Ni, Ga, Al and/or Ti) cathodes,” Ceram Int, vol. 35, no. 3, pp. 1145–1150, Apr. 2009.
  • L. Shen et al., “Cobalt-free nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery,” J. Coll. Inter. Sci, vol. 638, pp. 281–290, May 2023.
  • H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, “Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) ,” J. Electr. Soc, vol. 144, no. 9, pp. 3117–3125, Sep. 1997.
  • L. Mu et al., “Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO2 Cathode in Li-Metal Batteries,” ACS Appl Mat. Inter., vol. 12, no. 11, pp. 12874–12882, Mar. 2020.
  • H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, “Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) ,” J. Electr. Soc, vol. 144, no. 9, pp. 3117–3125, Sep. 1997.
  • H. Yang et al., “Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries,” Adv Funct Mater, vol. 29, no. 13, p. 1808825, Mar. 2019.
  • J. Kim and K. Amine, “The effect of tetravalent titanium substitution in LiNi1−xTixO2 (0.025⩽x⩽0.2) system,” Electr. Comm., vol. 3, no. 2, pp. 52–55, Feb. 2001.
  • Z. Xu et al., “Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1−x−yCoxMny)O2 cathode materials,” J. Pow. Sour., vol. 248, pp. 180–189, Feb. 2014.
  • T. Ohzuku, A. Ueda, and M. Nagayama, “Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells,” J. Electr. Soc, vol. 140, no. 7, pp. 1862–1870, Jul. 1993.
  • R. A. Yuwono et al., “Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries,” Chem.l Eng. Jour., vol. 456, p. 141065, Jan. 2023.
  • R. D. Shannon and IUCr, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” 0567-7394, vol. 32, no. 5, pp. 751–767, Sep. 1976.
  • T. Xu, F. Du, L. Wu, Z. Fan, L. Shen, and J. Zheng, “Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism,” Electr. Acta, vol. 417, p. 140345, Jun. 2022.
  • W. Li, J. N. Reimers, and J. R. Dahn, “In situ x-ray diffraction and electrochemical studies of Li1−xNiO2,” Sol. State Ion, vol. 67, no. 1–2, pp. 123–130, Dec. 1993.
  • H. Arai, S. Okada, Y. Sakurai, and J. I. Yamaki, “Reversibility of LiNiO2 cathode,” Sol. State Ion, vol. 95, no. 3–4, pp. 275–282, Mar. 1997.
  • C. S. Yoon et al., “Cation Ordering of Zr-Doped LiNiO2 Cathode for Lithium-Ion Batteries,” Chem. of Mat., vol. 30, no. 5, pp. 1808–1814, Mar. 2018.
  • U. H. Kim et al., “Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles,” Adv Ener. Mater, vol. 9, no. 15, p. 1803902, Apr. 2019.
  • H. H. Ryu, K. J. Park, C. S. Yoon, and Y. K. Sun, “Capacity fading of ni-rich li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?,” Chem. of Mat., vol. 30, no. 3, pp. 1155–1163, Feb. 2018.
  • H. H. Ryu, G. T. Park, C. S. Yoon, and Y. K. Sun, “Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries,” J. Mat. Chem A Mater, vol. 7, no. 31, pp. 18580–18588, Aug. 2019.
  • Y. Yao et al., “The effect of electrochemically inactive Ti substituted for Ru in Li2Ru1-xTixO3 on structure and electrochemical performance,” Jour. of Ener. Chem. , vol. 60, pp. 222–228, Sep. 2021.
  • B. Zong et al., “Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries,” Mater Today Commun, vol. 24, p. 101003, Sep. 2020.

LiNiO2'nin Performans Geliştirmesi İçin Mn ve Ti Eş Katkısı

Yıl 2024, Cilt: 3 Sayı: 3, 280 - 291, 31.10.2024
https://doi.org/10.62520/fujece.1459826

Öz

LiNiO2 (LNO) yüksek kapasiteye sahiptir ancak lityum-iyon pillerde pratik kullanımını sınırlayan yapısal istikrarsızlık ve kapasite azalmasından muzdariptir. Bu çalışma, bu sorunların üstesinden gelmek için bir strateji olarak LNO yapısındaki Ni bölgelerine Mn ve Ti birlikte katkılayarak LiNi0.95Mn0.025Ti0.025O2 (MnTi25) elde etmeyi ve fiziksel ve elektrokimyasal özelliklerini araştırmayı önermektedir. MnTi25, LNO'ya kıyasla gelişmiş yapısal kararlılık ve önemli ölçüde azaltılmış katyon karışımını ortaya çıkararak kayda değer elektrokimyasal sonuçlar vermiştir. MnTi25'in yarı hücre performansı etkileyicidir ve yerleşik %4 Mn ikameli ZoomWeMn4 standardına benzer bir kapasite sergileyerek etkili Li-iyon çıkarma ve ekleme işlemini göstermektedir. Ayrıca, grafit anoda karşı yapılan tam hücre testi, MnTi25'in ticari bir LNO bazlı malzeme ile neredeyse aynı kapasiteyi sunduğunu göstermektedir. Bu kayda değer başarı, yüksek kapasite potansiyelini korurken LNO'nun sınırlamalarını ele almada ortak katkının etkinliğini vurgulamaktadır. Bu çalışma, MnTi25'in, malzemenin yapısını Mn ve Ti birlikte katkılama yoluyla uyarlayarak yüksek performanslı lityum-iyon piller için umut verici bir katot malzemesi olabileceğini göstermektedir.

Kaynakça

  • J. R. Dahn, U. von Sacken, and C. A. Michal, “Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure,” Sol. State Ion, vol. 44, no. 1–2, pp. 87–97, Dec. 1990.
  • C. S. Yoon, D. W. Jun, S. T. Myung, and Y. K. Sun, “Structural Stability of LiNiO2 Cycled above 4.2 v,” ACS Ener. Lett, vol. 2, no. 5, pp. 1150–1155, May 2017.
  • J. Xu et al., “Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2,” Chem. Comm., vol. 52, no. 22, pp. 4239–4242, Mar. 2016.
  • J. Xu et al., “Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries,” ACS Appl Mater Inter., vol. 8, no. 46, pp. 31677–31683, Nov. 2016.
  • J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, “Structure and electrochemistry of LixFeyNi1-yO2,” Sol. State Ion, vol. 61, no. 4, pp. 335–344, Jun. 1993.
  • T. Ohzuku, A. Ueda, and M. Kouguchi, “Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries,” J. Electr. Soc, vol. 142, no. 12, pp. 4033–4039, Dec. 1995.
  • A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmas, “Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials,” Sol. State Ion, vol. 90, no. 1–4, pp. 83–90, Sep. 1996.
  • H. J. Kweon, S. J. Kim, and D. G. Park, “Modification of LixNi1−yCoyO2 by applying a surface coating of MgO,” J Pow. Sour., vol. 88, no. 2, pp. 255–261, Jun. 2000.
  • H. Omanda, T. Brousse, C. Marhic, and D. M. Schleich, “Improvement of the Thermal Stability of LiNi0.8Co0.2 O 2 Cathode by a SiO x Protective Coating,” J. Electr. Soc, vol. 151, no. 6, p. A922, May 2004.
  • J. Cho, T.-J. Kim, J. Kim, M. Noh, and B. Park, “Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.2 O 2 Cathode Materials for a Li-Ion Cell,” J. Electr. Soc, vol. 151, no. 11, p. A1899, Oct. 2004.
  • H. Qian et al., “Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review,” Elect. Ener. Rev., vol. 5, no. 4, pp. 1–32, Nov. 2022.
  • T. F. Yi, X. Y. Li, H. Liu, J. Shu, Y. R. Zhu, and R. S. Zhu, “Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery,” Ion. (Kiel), vol. 18, no. 6, pp. 529–539, Jun. 2012.
  • M. Y. Song, C. K. Park, S. Do Yoon, H. R. Park, and D. R. Mumm, “Electrochemical properties of LiNi1−yMyO2 (M = Ni, Ga, Al and/or Ti) cathodes,” Ceram Int, vol. 35, no. 3, pp. 1145–1150, Apr. 2009.
  • L. Shen et al., “Cobalt-free nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery,” J. Coll. Inter. Sci, vol. 638, pp. 281–290, May 2023.
  • H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, “Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) ,” J. Electr. Soc, vol. 144, no. 9, pp. 3117–3125, Sep. 1997.
  • L. Mu et al., “Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO2 Cathode in Li-Metal Batteries,” ACS Appl Mat. Inter., vol. 12, no. 11, pp. 12874–12882, Mar. 2020.
  • H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, “Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) ,” J. Electr. Soc, vol. 144, no. 9, pp. 3117–3125, Sep. 1997.
  • H. Yang et al., “Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries,” Adv Funct Mater, vol. 29, no. 13, p. 1808825, Mar. 2019.
  • J. Kim and K. Amine, “The effect of tetravalent titanium substitution in LiNi1−xTixO2 (0.025⩽x⩽0.2) system,” Electr. Comm., vol. 3, no. 2, pp. 52–55, Feb. 2001.
  • Z. Xu et al., “Effects of precursor, synthesis time and synthesis temperature on the physical and electrochemical properties of Li(Ni1−x−yCoxMny)O2 cathode materials,” J. Pow. Sour., vol. 248, pp. 180–189, Feb. 2014.
  • T. Ohzuku, A. Ueda, and M. Nagayama, “Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells,” J. Electr. Soc, vol. 140, no. 7, pp. 1862–1870, Jul. 1993.
  • R. A. Yuwono et al., “Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries,” Chem.l Eng. Jour., vol. 456, p. 141065, Jan. 2023.
  • R. D. Shannon and IUCr, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” 0567-7394, vol. 32, no. 5, pp. 751–767, Sep. 1976.
  • T. Xu, F. Du, L. Wu, Z. Fan, L. Shen, and J. Zheng, “Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism,” Electr. Acta, vol. 417, p. 140345, Jun. 2022.
  • W. Li, J. N. Reimers, and J. R. Dahn, “In situ x-ray diffraction and electrochemical studies of Li1−xNiO2,” Sol. State Ion, vol. 67, no. 1–2, pp. 123–130, Dec. 1993.
  • H. Arai, S. Okada, Y. Sakurai, and J. I. Yamaki, “Reversibility of LiNiO2 cathode,” Sol. State Ion, vol. 95, no. 3–4, pp. 275–282, Mar. 1997.
  • C. S. Yoon et al., “Cation Ordering of Zr-Doped LiNiO2 Cathode for Lithium-Ion Batteries,” Chem. of Mat., vol. 30, no. 5, pp. 1808–1814, Mar. 2018.
  • U. H. Kim et al., “Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles,” Adv Ener. Mater, vol. 9, no. 15, p. 1803902, Apr. 2019.
  • H. H. Ryu, K. J. Park, C. S. Yoon, and Y. K. Sun, “Capacity fading of ni-rich li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?,” Chem. of Mat., vol. 30, no. 3, pp. 1155–1163, Feb. 2018.
  • H. H. Ryu, G. T. Park, C. S. Yoon, and Y. K. Sun, “Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries,” J. Mat. Chem A Mater, vol. 7, no. 31, pp. 18580–18588, Aug. 2019.
  • Y. Yao et al., “The effect of electrochemically inactive Ti substituted for Ru in Li2Ru1-xTixO3 on structure and electrochemical performance,” Jour. of Ener. Chem. , vol. 60, pp. 222–228, Sep. 2021.
  • B. Zong et al., “Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries,” Mater Today Commun, vol. 24, p. 101003, Sep. 2020.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Research Articles
Yazarlar

Erdinç Öz 0000-0003-4321-8264

Jeff Dahn 0000-0002-6997-2436

Yayımlanma Tarihi 31 Ekim 2024
Gönderilme Tarihi 27 Mart 2024
Kabul Tarihi 29 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 3

Kaynak Göster

APA Öz, E., & Dahn, J. (2024). Mn and Ti Co-doping of LiNiO2 to Improve Performance. Firat University Journal of Experimental and Computational Engineering, 3(3), 280-291. https://doi.org/10.62520/fujece.1459826
AMA Öz E, Dahn J. Mn and Ti Co-doping of LiNiO2 to Improve Performance. FUJECE. Ekim 2024;3(3):280-291. doi:10.62520/fujece.1459826
Chicago Öz, Erdinç, ve Jeff Dahn. “Mn and Ti Co-Doping of LiNiO2 to Improve Performance”. Firat University Journal of Experimental and Computational Engineering 3, sy. 3 (Ekim 2024): 280-91. https://doi.org/10.62520/fujece.1459826.
EndNote Öz E, Dahn J (01 Ekim 2024) Mn and Ti Co-doping of LiNiO2 to Improve Performance. Firat University Journal of Experimental and Computational Engineering 3 3 280–291.
IEEE E. Öz ve J. Dahn, “Mn and Ti Co-doping of LiNiO2 to Improve Performance”, FUJECE, c. 3, sy. 3, ss. 280–291, 2024, doi: 10.62520/fujece.1459826.
ISNAD Öz, Erdinç - Dahn, Jeff. “Mn and Ti Co-Doping of LiNiO2 to Improve Performance”. Firat University Journal of Experimental and Computational Engineering 3/3 (Ekim 2024), 280-291. https://doi.org/10.62520/fujece.1459826.
JAMA Öz E, Dahn J. Mn and Ti Co-doping of LiNiO2 to Improve Performance. FUJECE. 2024;3:280–291.
MLA Öz, Erdinç ve Jeff Dahn. “Mn and Ti Co-Doping of LiNiO2 to Improve Performance”. Firat University Journal of Experimental and Computational Engineering, c. 3, sy. 3, 2024, ss. 280-91, doi:10.62520/fujece.1459826.
Vancouver Öz E, Dahn J. Mn and Ti Co-doping of LiNiO2 to Improve Performance. FUJECE. 2024;3(3):280-91.