Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 2, 125 - 136, 15.12.2020
https://doi.org/10.33401/fujma.780396

Öz

Kaynakça

  • [1] T. V. An, N. V. Dung, Z. Kadelburg, S. Radenovic, Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A., 109 (2015), 175-198.
  • [2] T. Dosenovic, M. Postolache, S. Radenovic, On multiplicative metric spaces: Survey, Fixed Point Theory Appl., 2016 (2016), Article ID 92, 17 pages, doi: 10.1186/s13663-016-0584-6.
  • [3] A. E. Bashirov, E. M. Kurpinar, A. Özyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337(1) (2008), 36-48.
  • [4] M. K. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, John Wiley, New York, 2001.
  • [5] C.G. Moorthy, S.I. Raj, Inverse fixed points of sequences of mappings, Asian-European Journal of Mathematics, 2020(2020), Article ID 2150027, 8 pages, doi: 10.1142/S1793557121500273.
  • [6] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 2012(2012), Article ID 281, 15 pages, doi.org/10.1186/1029-242X-2012-281.
  • [7] M. Candan, A new sequence space isomorphic to the space l(p) and compact operators, J. Math. Comput. Sci., 4(2)(2014), 306-334.
  • [8] M. Candan, Some new sequence spaces derived from the spaces of bounded, convergent and null sequences, Int. J. Mod. Math. Sci., 12(2)(2014), 74-87.
  • [9] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Differ. Equ. 2014 (2014), Article ID 163, 18 pages, doi: 10.1186/1687-1847-2014-163.
  • [10] M.Ozavsar, A.C. Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, (2012), arXiv:1205.5131v1 [math.GM].
  • [11] J. L. Kelly, General Topology, Von Nostrand, London, 1955.
  • [12] A. Granas, J. Dugundji, Fixed point theory, Springer, New York, 2003.
  • [13] P. Pongsriiam, I. Termwuttipong, On metric preserving functions and fixed point theorems, Fixed Point Theory Appl., 2014 (2014), Article ID 179, 14 pages, doi: 10.1186/1687-1812-2014-179.
  • [14] P. Corazza, Introduction to metric preserving functions, Amer. Math. Monthly, 104 (1999), 309-323.

Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications

Yıl 2020, Cilt: 3 Sayı: 2, 125 - 136, 15.12.2020
https://doi.org/10.33401/fujma.780396

Öz

The axioms for a metric $D$ were transformed into axioms of the function $\exp D$, and a new generalized metric called multiplicative metric was introduced in 2008 based on these transformed axioms. A review of a method of converting metric fixed point results through logarithmic transformation to multiplicative metric fixed point results and converting multiplicative metric fixed point results through exponential transformation to metric fixed point results has been presented. Applications of this procedure have also been discussed.

Kaynakça

  • [1] T. V. An, N. V. Dung, Z. Kadelburg, S. Radenovic, Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A., 109 (2015), 175-198.
  • [2] T. Dosenovic, M. Postolache, S. Radenovic, On multiplicative metric spaces: Survey, Fixed Point Theory Appl., 2016 (2016), Article ID 92, 17 pages, doi: 10.1186/s13663-016-0584-6.
  • [3] A. E. Bashirov, E. M. Kurpinar, A. Özyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337(1) (2008), 36-48.
  • [4] M. K. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, John Wiley, New York, 2001.
  • [5] C.G. Moorthy, S.I. Raj, Inverse fixed points of sequences of mappings, Asian-European Journal of Mathematics, 2020(2020), Article ID 2150027, 8 pages, doi: 10.1142/S1793557121500273.
  • [6] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 2012(2012), Article ID 281, 15 pages, doi.org/10.1186/1029-242X-2012-281.
  • [7] M. Candan, A new sequence space isomorphic to the space l(p) and compact operators, J. Math. Comput. Sci., 4(2)(2014), 306-334.
  • [8] M. Candan, Some new sequence spaces derived from the spaces of bounded, convergent and null sequences, Int. J. Mod. Math. Sci., 12(2)(2014), 74-87.
  • [9] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Differ. Equ. 2014 (2014), Article ID 163, 18 pages, doi: 10.1186/1687-1847-2014-163.
  • [10] M.Ozavsar, A.C. Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, (2012), arXiv:1205.5131v1 [math.GM].
  • [11] J. L. Kelly, General Topology, Von Nostrand, London, 1955.
  • [12] A. Granas, J. Dugundji, Fixed point theory, Springer, New York, 2003.
  • [13] P. Pongsriiam, I. Termwuttipong, On metric preserving functions and fixed point theorems, Fixed Point Theory Appl., 2014 (2014), Article ID 179, 14 pages, doi: 10.1186/1687-1812-2014-179.
  • [14] P. Corazza, Introduction to metric preserving functions, Amer. Math. Monthly, 104 (1999), 309-323.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Ganesa Moorthy C. 0000-0003-3119-7531

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 14 Ağustos 2020
Kabul Tarihi 4 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA C., G. M. (2020). Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications. Fundamental Journal of Mathematics and Applications, 3(2), 125-136. https://doi.org/10.33401/fujma.780396
AMA C. GM. Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications. Fundam. J. Math. Appl. Aralık 2020;3(2):125-136. doi:10.33401/fujma.780396
Chicago C., Ganesa Moorthy. “Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications”. Fundamental Journal of Mathematics and Applications 3, sy. 2 (Aralık 2020): 125-36. https://doi.org/10.33401/fujma.780396.
EndNote C. GM (01 Aralık 2020) Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications. Fundamental Journal of Mathematics and Applications 3 2 125–136.
IEEE G. M. C., “Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications”, Fundam. J. Math. Appl., c. 3, sy. 2, ss. 125–136, 2020, doi: 10.33401/fujma.780396.
ISNAD C., Ganesa Moorthy. “Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications”. Fundamental Journal of Mathematics and Applications 3/2 (Aralık 2020), 125-136. https://doi.org/10.33401/fujma.780396.
JAMA C. GM. Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications. Fundam. J. Math. Appl. 2020;3:125–136.
MLA C., Ganesa Moorthy. “Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications”. Fundamental Journal of Mathematics and Applications, c. 3, sy. 2, 2020, ss. 125-36, doi:10.33401/fujma.780396.
Vancouver C. GM. Fixed Point Formulation Using Exponential Logarithmic Transformations and Its Applications. Fundam. J. Math. Appl. 2020;3(2):125-36.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a