Yıl 2020,
Cilt: 3 Sayı: 2, 153 - 160, 15.12.2020
Elif Nuray Yıldırım
,
Ali Akgul
Kaynakça
- [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
- [2] S. Bergman, The Kernel Function and Conformal Mapping, American Math. Soc., New York, (1950).
- [3] M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, New York: Nova Sci. Publ., (2009).
- [4] M. I. Syam, Q. M. Al-Mdallal and M. Al-Refai, A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems, Com. in Num. Analy., 2 (2017), 217–232.
- [5] W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, App. Math. Mod., 39 (16) (2015), 4871–4876.
- [6] X. Y. Li, B. Y. Wu, R. T. Wan, Reproducing Kernel Method for Fractional Riccati Differential Equations, Abst. App. Ana., (2014), 1-6.
- [7] A. Alvandi, M. Paripour, The combined reproducing kernel method and Taylor series to solve nonlinear Abel’s integral equations with weakly singular kernel, Cogent Mathematics, 3 (2016).
- [8] A. Freihat, R. Abu-Gdairi, H. Khalil, E. Abuteen, M. Al-Smadi, R. A. Khan, Fitted Reproducing Kernel Method for Solving a Class of Third-Order Periodic Boundary Value Problems, American J. App. Sci., 13 (2016), 501–510.
- [9] G. Akram, H. U. Rehman, Numerical solution of eighth order boundary value problems in reproducing Kernel space, Numer. Algor, 62(3) (2013), 527–540.
- [10] S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,
Appl. Math. Comput, 172 (2006), 485–490.
- [11] G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, San Diego, (1986).
- [12] A. Daşcıoğlu, H. Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebshev series, Appl. Math. Comput., 217 (2011), 5658–5666.
- [13] A.M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations, Appl. Math. Comput., 128 (2002), 45–57.
- [14] M. K. Horn, Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output, SI AM J. Numer. Analysis, 20 (1983), 558-568.
- [15] L. Fox, D. F. Mayers, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, (1987).
- [16] A.M. Wazwaz, The numerical solution of fifth-order boundary value problems by the decomposition method, J. Comput. Appl. Math. 136(1–2) (2001), 259–270 .
- [17] Waeleh et al., Numerical Solution of Higher Order Ordinary Differential Equations by Direct Block Code, J. Math. Sta., 8(1) (2012), 77–81.
- [18] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill Publishing, (1972).
- [19] F. Hoppensteadt, Properties of solutions of ordinary differential equations with small parameters, Com. on Pure and App. Math., 24(6) (1971), 807–840.
- [20] G. R. Sell, On the fundamental theory of ordinary differential equations, Jour. of Diff. Equ. 1 (1965), 370–392.
- [21] D. Baleanu, A. Fernandez, A. Akgül, On a Fractional Operator Combining Proportional and Classical Differintegrals, Mathematics, 8(3) (2020).
- [22] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons and Fractals 114, (2020), 478-482.
- [23] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos: An Inter. J. Nonlin. Sci. 29(2) 023108, (2020).
- [24] K. M. Owolabi, A. Atangana, A. Akgül, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alexandria Eng. J. 59 (2020), 2477-2490.
- [25] A. Atangana, A. Akgül, K. M. Owolabi, Analysis of fractal fractional differential equations, Alexandria Eng. J. 59 (2020), 1117-1134.
- [26] A. Atangana, A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform, Alexandria Eng. J. 59 (2020), 1971-1984.
On Solutions of a Higher Order Nonhomogeneous Ordinary Differential Equation
Yıl 2020,
Cilt: 3 Sayı: 2, 153 - 160, 15.12.2020
Elif Nuray Yıldırım
,
Ali Akgul
Öz
Higher order differential equations (ODE) has an important role in the modelling process. It is also much significant which the method is used for the solution. In this study, in order to get the approximate solution of a nonhomogeneous initial value problem, reproducing kernel Hilbert space method is used. Reproducing kernel functions have been obtained and the given problem transformed to the homogeneous form. The results have been presented with the graphics. Absolute errors and relative errors have been given in the tables.
Kaynakça
- [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
- [2] S. Bergman, The Kernel Function and Conformal Mapping, American Math. Soc., New York, (1950).
- [3] M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, New York: Nova Sci. Publ., (2009).
- [4] M. I. Syam, Q. M. Al-Mdallal and M. Al-Refai, A Numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems, Com. in Num. Analy., 2 (2017), 217–232.
- [5] W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, App. Math. Mod., 39 (16) (2015), 4871–4876.
- [6] X. Y. Li, B. Y. Wu, R. T. Wan, Reproducing Kernel Method for Fractional Riccati Differential Equations, Abst. App. Ana., (2014), 1-6.
- [7] A. Alvandi, M. Paripour, The combined reproducing kernel method and Taylor series to solve nonlinear Abel’s integral equations with weakly singular kernel, Cogent Mathematics, 3 (2016).
- [8] A. Freihat, R. Abu-Gdairi, H. Khalil, E. Abuteen, M. Al-Smadi, R. A. Khan, Fitted Reproducing Kernel Method for Solving a Class of Third-Order Periodic Boundary Value Problems, American J. App. Sci., 13 (2016), 501–510.
- [9] G. Akram, H. U. Rehman, Numerical solution of eighth order boundary value problems in reproducing Kernel space, Numer. Algor, 62(3) (2013), 527–540.
- [10] S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,
Appl. Math. Comput, 172 (2006), 485–490.
- [11] G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, San Diego, (1986).
- [12] A. Daşcıoğlu, H. Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebshev series, Appl. Math. Comput., 217 (2011), 5658–5666.
- [13] A.M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations, Appl. Math. Comput., 128 (2002), 45–57.
- [14] M. K. Horn, Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output, SI AM J. Numer. Analysis, 20 (1983), 558-568.
- [15] L. Fox, D. F. Mayers, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, (1987).
- [16] A.M. Wazwaz, The numerical solution of fifth-order boundary value problems by the decomposition method, J. Comput. Appl. Math. 136(1–2) (2001), 259–270 .
- [17] Waeleh et al., Numerical Solution of Higher Order Ordinary Differential Equations by Direct Block Code, J. Math. Sta., 8(1) (2012), 77–81.
- [18] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill Publishing, (1972).
- [19] F. Hoppensteadt, Properties of solutions of ordinary differential equations with small parameters, Com. on Pure and App. Math., 24(6) (1971), 807–840.
- [20] G. R. Sell, On the fundamental theory of ordinary differential equations, Jour. of Diff. Equ. 1 (1965), 370–392.
- [21] D. Baleanu, A. Fernandez, A. Akgül, On a Fractional Operator Combining Proportional and Classical Differintegrals, Mathematics, 8(3) (2020).
- [22] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons and Fractals 114, (2020), 478-482.
- [23] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos: An Inter. J. Nonlin. Sci. 29(2) 023108, (2020).
- [24] K. M. Owolabi, A. Atangana, A. Akgül, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alexandria Eng. J. 59 (2020), 2477-2490.
- [25] A. Atangana, A. Akgül, K. M. Owolabi, Analysis of fractal fractional differential equations, Alexandria Eng. J. 59 (2020), 1117-1134.
- [26] A. Atangana, A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform, Alexandria Eng. J. 59 (2020), 1971-1984.