Research Article
BibTex RIS Cite

$\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups

Year 2021, Volume: 4 Issue: 1, 45 - 48, 01.03.2021
https://doi.org/10.33401/fujma.842104

Abstract

In this paper firstly, for functions defined on discrete countable amenable semigroups (DCASG), notions of $\mathfrak{I}$-limit and $\mathfrak{I}$-cluster points are introduced. Then, for the functions, notions of $\mathfrak{I}$-limit superior and inferior are examined.

Supporting Institution

TÜBİTAK

Project Number

120F082

Thanks

This study is supported by TÜBİTAK (Scientific and Technological Research Council of Turkey) with the project number 120F082.

References

  • [1] P. Kostyrko, T. Salat, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [2] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (2005), 443–464.
  • [3] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165–172.
  • [4] M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509–544.
  • [5] S. A. Douglass, On a concept of summability in amenable semigroups, Math. Scand., 28 (1968), 96–102.
  • [6] P. F. Mah, Summability in amenable semigroups, Trans. Amer. Math. Soc., 156 (1971), 391–403.
  • [7] F. Nuray, B. E. Rhoades, Some kinds of convergence defined by Folner sequences, Analysis, 31(4) (2011), 381–390.
  • [8] E. Dündar, F. Nuray, U. Ulusu, I-convergent functions defined on amenable semigroups, (in review).
  • [9] I. Namioka, Følner’s conditions for amenable semigroups, Math. Scand., 15 (1964), 18–28.
Year 2021, Volume: 4 Issue: 1, 45 - 48, 01.03.2021
https://doi.org/10.33401/fujma.842104

Abstract

Project Number

120F082

References

  • [1] P. Kostyrko, T. Salat, W. Wilczy´nski, I-convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [2] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55 (2005), 443–464.
  • [3] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165–172.
  • [4] M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509–544.
  • [5] S. A. Douglass, On a concept of summability in amenable semigroups, Math. Scand., 28 (1968), 96–102.
  • [6] P. F. Mah, Summability in amenable semigroups, Trans. Amer. Math. Soc., 156 (1971), 391–403.
  • [7] F. Nuray, B. E. Rhoades, Some kinds of convergence defined by Folner sequences, Analysis, 31(4) (2011), 381–390.
  • [8] E. Dündar, F. Nuray, U. Ulusu, I-convergent functions defined on amenable semigroups, (in review).
  • [9] I. Namioka, Følner’s conditions for amenable semigroups, Math. Scand., 15 (1964), 18–28.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Uğur Ulusu 0000-0001-7658-6114

Fatih Nuray 0000-0003-0160-4001

Erdinç Dündar 0000-0002-0545-7486

Project Number 120F082
Publication Date March 1, 2021
Submission Date December 16, 2020
Acceptance Date February 25, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Ulusu, U., Nuray, F., & Dündar, E. (2021). $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups. Fundamental Journal of Mathematics and Applications, 4(1), 45-48. https://doi.org/10.33401/fujma.842104
AMA Ulusu U, Nuray F, Dündar E. $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups. Fundam. J. Math. Appl. March 2021;4(1):45-48. doi:10.33401/fujma.842104
Chicago Ulusu, Uğur, Fatih Nuray, and Erdinç Dündar. “$\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups”. Fundamental Journal of Mathematics and Applications 4, no. 1 (March 2021): 45-48. https://doi.org/10.33401/fujma.842104.
EndNote Ulusu U, Nuray F, Dündar E (March 1, 2021) $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups. Fundamental Journal of Mathematics and Applications 4 1 45–48.
IEEE U. Ulusu, F. Nuray, and E. Dündar, “$\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups”, Fundam. J. Math. Appl., vol. 4, no. 1, pp. 45–48, 2021, doi: 10.33401/fujma.842104.
ISNAD Ulusu, Uğur et al. “$\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups”. Fundamental Journal of Mathematics and Applications 4/1 (March 2021), 45-48. https://doi.org/10.33401/fujma.842104.
JAMA Ulusu U, Nuray F, Dündar E. $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups. Fundam. J. Math. Appl. 2021;4:45–48.
MLA Ulusu, Uğur et al. “$\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 1, 2021, pp. 45-48, doi:10.33401/fujma.842104.
Vancouver Ulusu U, Nuray F, Dündar E. $\mathfrak{I}$-Limit and $\mathfrak{I}$-Cluster Points for Functions Defined on Amenable Semigroups. Fundam. J. Math. Appl. 2021;4(1):45-8.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a