Yıl 2023,
Cilt: 6 Sayı: 3, 137 - 146, 30.09.2023
Nurullah Yılmaz
,
Ayşegül Kayacan
Kaynakça
- [1] Z. H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math., 220 (2008), 355–363.
- [2] Y. Liuyang, C. Fei, W. Zhongping, L. Weigang, W. Wenbo, A nonmonotone smoothing Newton method for system of nonlinear inequalities based on a new smoothing function, Comput Appl. Math., 134 (2019), 38–91.
- [3] C. Wu, J. Wang, J. H. Alcantara and J. S. Chen, Smoothing strategy along with conjugate gradient algorithm for signal seconstruction, J. Sci. Comput.
87 (2021), 21.
- [4] Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for `1-norm problems with applications to compressed sensing, Nonlinear Anal. Theory
Methods Appl., 74(11) (2011), 3570–3577.
- [5] A. S. Halilu, A. Majumder, M. Y. Waziri, K. Ahmed, A.M Awwal, Motion control of the two joint planar robotic manipulators through accelerated
Dai–Liao method for solving system of nonlinear equations, Eng. Comput., 39(5) (2022), 1802–1840.
- [6] D. Malyshev, L. Rybak, G. Carbone, T. Semenenko, A. Nozdracheva, Optimal design of a parallel manipulator for aliquoting of biomaterials
considering workspace and singularity zones, Appl. Sci., 12(4) (2022), 2070.
- [7] Y. Zhang, Z.-H. Huang, A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities, J. Comput. Appl. Math., 233
(2010) 2312–2321.
- [8] J. S. Chen, C. H. Ko, Y. D. Liu, S. P. Wang, New smoothing functions for solving a system of equalities and inequalities, Pacific J. Optim, 12(1) (2016),
185-206.
- [9] G. Yuan, T. Li, W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math., 147
(2020), 129–141.
- [10] R. Li, M. Cao, G. Zhou, A new adaptive accelerated Levenberg–Marquardt method for solving nonlinear equations and its applications in supply chain
problems, Symmetry, 15(3) (2023), 588.
- [11] D.Q. Mayne, E. Polak, A. J. Heunis, Solving nonlinear inequalities in a finite number of iterations, J. Optim. Theory Appl., 33(2) (1981), 207–221.
- [12] H. Che, M. Li, A smoothing and regularization Broyden-like method for nonlinear inequalities, J. Appl. Math. Comput., 41 (2013) 209–227.
- [13] A. B. Abubakar, P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations, Numer. Algorithms, 81 (2019), 197-210.
- [14] M. Y. Waziri, K. Ahmed, K. Two descent Dai-Yuan conjugate gradient methods for systems of monotone nonlinear equations, J. Sci. Comput., 90
(2022), 1-53.
- [15] Z. Saeidian, M. R. Peyghami, M. Habibi, S. Ghasemi, A new trust-region method for solving systems of equalities and inequalities, Comp. Appl. Math.
36 (2017), 769 70.
- [16] X. Fan, Q. Yan, Solving system of inequalities via a smoothing homotopy method, Numer Algorithms 82 (2019), 719–728.
- [17] L. Qi, D. Sun, Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl.
113 (2002), 121–147.
- [18] S. Huang, Z. Wan, X. H. Chen, A new nonmonotone line search technique for unconstrained optimization, Numer. Algorithms 68 (4) (2015), 671–689.
- [19] H. C. Zhang, W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 14(4) (2004),
1043–756.
- [20] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. Ser. (B), 134 (2012), 71–99.
- [21] D. Bertsekas, Nondifferentiable optimization via approximation, Math Programmming Study, 3 (1975) 1–25.
- [22] I. Zang, A smooting out technique for min-max optimization, Math. Programm., 19 (1980), 61–77.
- [23] C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problem, Comput. Optim. Appl., 5 (1996) 97-138.
- [24] A. E. Xavier, Optimal covering of plane domains by circles via hyperbolic smoothing, J. Global Optim., 31 (2005), 493–504.
- [25] A. M. Bagirov, A. Al Nuamiat, N. Sultanova, Hyperbolic smoothing functions for nonsmooth minimization, Optimization, 62 (6) (2013), 759-782.
- [26] A. Sahiner, G. Kapusuz, N. Yilmaz, A new smoothing approach to exact penalty functions for inequality constrained optimization problems, Numer.
Algebra Control Optim., 6 (2) (2016) 161–173.
- [27] N. Yilmaz, A. Sahiner, On a new smoothing technique for non-smooth, non-convex optimization, Numer. Algebra Control Optim., 10 (2020), 317–330.
- [28] C. Grossmann, Smoothing techniques for exact penalty function methods, Contemporary Mathematics: A Panaroma of Mathematics Pure and Applied,
American Mathematical Society, Rhode Island, 658 (2016) 249–265.
- [29] L. Qi, P. Tseng, On almost smooth functions and piecewise smooth functions, Nonlinear Anal. 67 (2007) 773–794.
- [30] N. Yilmaz, A. Sahiner, New smoothing approximations to piecewise smooth functions and applications, Numer. Func. Anal. Optim., 40 (2019),
513–534.
A New Smoothing Algorithm to Solve a System of Nonlinear Inequalities
Yıl 2023,
Cilt: 6 Sayı: 3, 137 - 146, 30.09.2023
Nurullah Yılmaz
,
Ayşegül Kayacan
Öz
In this study, the system of nonlinear inequalities (SNI) problem is investigated. First, a SNI is reformulated as a system of nonsmooth and nonlinear equations (SNNE). Second, a new smoothing technique for the "$\max$" function is proposed and the smoothing technique is employed for each element of the SNNE. Then, a new smoothing algorithm is developed in order to solve SNNE by combining the smoothing technique with the iterative method. The new algorithm is applied to some numerical examples to show the efficiency of our algorithm.
Kaynakça
- [1] Z. H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math., 220 (2008), 355–363.
- [2] Y. Liuyang, C. Fei, W. Zhongping, L. Weigang, W. Wenbo, A nonmonotone smoothing Newton method for system of nonlinear inequalities based on a new smoothing function, Comput Appl. Math., 134 (2019), 38–91.
- [3] C. Wu, J. Wang, J. H. Alcantara and J. S. Chen, Smoothing strategy along with conjugate gradient algorithm for signal seconstruction, J. Sci. Comput.
87 (2021), 21.
- [4] Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for `1-norm problems with applications to compressed sensing, Nonlinear Anal. Theory
Methods Appl., 74(11) (2011), 3570–3577.
- [5] A. S. Halilu, A. Majumder, M. Y. Waziri, K. Ahmed, A.M Awwal, Motion control of the two joint planar robotic manipulators through accelerated
Dai–Liao method for solving system of nonlinear equations, Eng. Comput., 39(5) (2022), 1802–1840.
- [6] D. Malyshev, L. Rybak, G. Carbone, T. Semenenko, A. Nozdracheva, Optimal design of a parallel manipulator for aliquoting of biomaterials
considering workspace and singularity zones, Appl. Sci., 12(4) (2022), 2070.
- [7] Y. Zhang, Z.-H. Huang, A nonmonotone smoothing-type algorithm for solving a system of equalities and inequalities, J. Comput. Appl. Math., 233
(2010) 2312–2321.
- [8] J. S. Chen, C. H. Ko, Y. D. Liu, S. P. Wang, New smoothing functions for solving a system of equalities and inequalities, Pacific J. Optim, 12(1) (2016),
185-206.
- [9] G. Yuan, T. Li, W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math., 147
(2020), 129–141.
- [10] R. Li, M. Cao, G. Zhou, A new adaptive accelerated Levenberg–Marquardt method for solving nonlinear equations and its applications in supply chain
problems, Symmetry, 15(3) (2023), 588.
- [11] D.Q. Mayne, E. Polak, A. J. Heunis, Solving nonlinear inequalities in a finite number of iterations, J. Optim. Theory Appl., 33(2) (1981), 207–221.
- [12] H. Che, M. Li, A smoothing and regularization Broyden-like method for nonlinear inequalities, J. Appl. Math. Comput., 41 (2013) 209–227.
- [13] A. B. Abubakar, P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations, Numer. Algorithms, 81 (2019), 197-210.
- [14] M. Y. Waziri, K. Ahmed, K. Two descent Dai-Yuan conjugate gradient methods for systems of monotone nonlinear equations, J. Sci. Comput., 90
(2022), 1-53.
- [15] Z. Saeidian, M. R. Peyghami, M. Habibi, S. Ghasemi, A new trust-region method for solving systems of equalities and inequalities, Comp. Appl. Math.
36 (2017), 769 70.
- [16] X. Fan, Q. Yan, Solving system of inequalities via a smoothing homotopy method, Numer Algorithms 82 (2019), 719–728.
- [17] L. Qi, D. Sun, Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl.
113 (2002), 121–147.
- [18] S. Huang, Z. Wan, X. H. Chen, A new nonmonotone line search technique for unconstrained optimization, Numer. Algorithms 68 (4) (2015), 671–689.
- [19] H. C. Zhang, W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 14(4) (2004),
1043–756.
- [20] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. Ser. (B), 134 (2012), 71–99.
- [21] D. Bertsekas, Nondifferentiable optimization via approximation, Math Programmming Study, 3 (1975) 1–25.
- [22] I. Zang, A smooting out technique for min-max optimization, Math. Programm., 19 (1980), 61–77.
- [23] C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problem, Comput. Optim. Appl., 5 (1996) 97-138.
- [24] A. E. Xavier, Optimal covering of plane domains by circles via hyperbolic smoothing, J. Global Optim., 31 (2005), 493–504.
- [25] A. M. Bagirov, A. Al Nuamiat, N. Sultanova, Hyperbolic smoothing functions for nonsmooth minimization, Optimization, 62 (6) (2013), 759-782.
- [26] A. Sahiner, G. Kapusuz, N. Yilmaz, A new smoothing approach to exact penalty functions for inequality constrained optimization problems, Numer.
Algebra Control Optim., 6 (2) (2016) 161–173.
- [27] N. Yilmaz, A. Sahiner, On a new smoothing technique for non-smooth, non-convex optimization, Numer. Algebra Control Optim., 10 (2020), 317–330.
- [28] C. Grossmann, Smoothing techniques for exact penalty function methods, Contemporary Mathematics: A Panaroma of Mathematics Pure and Applied,
American Mathematical Society, Rhode Island, 658 (2016) 249–265.
- [29] L. Qi, P. Tseng, On almost smooth functions and piecewise smooth functions, Nonlinear Anal. 67 (2007) 773–794.
- [30] N. Yilmaz, A. Sahiner, New smoothing approximations to piecewise smooth functions and applications, Numer. Func. Anal. Optim., 40 (2019),
513–534.