Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi

Yıl 2017, Cilt: 29 Sayı: 2, 87 - 96, 01.10.2017

Öz

Bu çalışmada, toz metalurjisi (T/M) yöntemi ile üretilen D2 takım çeliğinin mikroyapı ve mekanik özelliklerine B ilavesinin etkileri incelenmiştir. D2 takım çeliği tozunun içerisine ağırlıkça %0,5-2 arasında farklı oranlarda amorf B ilavesi yapılarak elde edilen toz karışımları 700 MPa basınç uygulanarak şekillendirilmiştir. Bor ilavesinin sinterleme davranışına etkisini tespit etmek amacıyla şekillendirilen ham numuneler farklı sıcaklıklarda sinterlenmiştir. En yüksek yoğunlaşmayı sağlayan sinterleme parametrelerini tespit etmek amacıyla yoğunluk ölçümleri gerçekleştirilmiştir. Optimum şartlarda sinterlenen numunelerin mikroyapı ve mekanik özellikleri incelenmiştir. Mikroyapı incelemeleri X-ışınları analizi (XRD), taramalı elektron mikroskobu (SEM) ve enerji dağılımı spektrometresi (EDS) ile gerçekleştirilmiştir. Mekanik özelliklerin belirlenmesinde sertlik ölçümlerinden yararlanılmıştır. Sonuçlar, belirli bir orana kadar B ilavesinin, daha düşük sinterleme sıcaklıklarında daha yüksek bağıl yoğunluk değerleri sağladığını göstermiştir. XRD analizleri ve SEM incelemeleri, B oranındaki artışın M23C6 tipi karbürlerin M23(C,B)6 boro-karbürlere dönüşmesine yol açtığını göstermiştir. B oranındaki artışla birlikte üretilen çelik malzemelerin sertlik değerlerinde artış olduğu belirlenmiştir.

Kaynakça

  • 1.Budinski, K.G. (1992). Engineering Materials, Properties and Selection. Prentice Hall, New Jersey, 373–411.
  • 2. Bourithis, L., Papadimitriou, G.D. and Sideris, J. (2006).Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribology International, 39: 479–489.
  • 3. Glaeser, W.A. (1992). Materials for Tribology. Tribology Series, 20, Elsevier, 33–37.
  • 4. Roberts, G., Krauss, G. and Kennedy, R. (1998). Tool Steels. 5., ASM International, Ohio.
  • 4. Thorpe, W.R. and Chicco, B. (1985). The Fe-rich corner of the metastable C-Cr-Fe liquidus surface. Metallurgical and Materials Transactions A, 16(9): 1541–1549.
  • 5. Hamidzadeh, M.A., Meratian, M. and Zahrani, M.M. (2012). A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium. Materials Science and Engineering A, 556: 758–766.
  • 6. Tumko, A.N. (1996). Production of large forgings from high-chromium ledeburitic steels. Steel in Translation, 26: 73–76.
  • 7. Berns, H. and Broeckmant, C. (1997). Fracture of hot formed ledeburitic chromium steels. Engineering Fracture Mechanics, 58: 311–325.
  • 8. Kheirandish, S., Saghafian, H., Hedjazi, J. and Momeni, M. (2010). Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel. Journal of Iron and Steel Research, International, 17(9): 40-45.
  • 9. Novak, P., Vojtech, D. and Serak, J. (2005). Pulsed-plasma nitriding of a niobium–alloyed PM tool steel. Materials Science and Engineering A, 393: 286–293.
  • 10. Muro, P., Gimenez, S. and Iturriza, I. (2002). Sintering behaviour and fracture toughness characterization of D2 matrix tool steel, comparison with wrought and PM D2. Scripta Materialia, 46(5): 369–373.
  • 11. Ernst, I.C. and Duh, D. (2004). Properties of cold-work tool steel X155CrVMo12-1 produced via spray forming and conventional ingot casting. Journal of Materials Science, 39: 6835–6838.
  • 12. Schulz, A., Uhlenwinkel, V., Escher, C., Kohlmann, R., Kulmburg, A., Montero, M.C., Rabitsch, R., Schutzenhfer, W., Stocchi, D. and Viale, D. (2008). Opportunities and challenges of spray forming high-alloyed steels. Materials Science and Engineering A, 477: 69–79.
  • 13. Gülsoy, H.Ö., Bilici, M.K., Bozkurt, Y. and Salman, S. (2007). “Enhancing the wear properties of iron based powder metallurgy alloys by boron additions, Materials and Design, 28: 2255-2259.
  • 14. Weber, S., Theisen, W., Castro, F. and Pyzalla, A. (2009). Influence of gas atmosphere and hard particle addition on the sintering behavior of high alloyed PM cold work tool steels. Materials Science and Engineering A, 515: 175-182.
  • 15. Dudrova, E., Selecka, M., Bures, R. and Kabatova, M. (1997). Effect of boron addition on microstructure and properties of sintered Fe-1 .5Mo powder materials. ISIJ International, 37(1): 59-64.
  • 16. Bakan, H.I., Heaney, D. and German, R.M. (2001). Effect of nickel boride and boron additions on sintering characteristics of injection moulded 316L powder using water soluble binder system. Powder Metallurgy, 44(1): 235-242.
  • 17. Sercombe, T.B. (2003). Sintering of freeformed maraging steel with boron additions. Materials Science and Engineering A, 363: 242–252.
  • 18. Selecká, M., Šalak, A. and Danninger, H. (2003). The effect of boron liquid phase sintering on properties of Ni-, Mo- and Cr-alloyed structural steels. Journal of Materials Processing Technology, 141: 379–384.
  • 19. Gülsoy, H.Ö., Salman, S. and Özbek, S. (2004). Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder. Journal of Materials Science, 39: 4835-4840.
  • 20. Cabral Miramontes, J.A.C., Barceinas Sanchez, J.D.O., Almeraya Calderon, F., Martinez Villafane, A. and Chacon Nava, J.G. (2010). Effect of Boron additions on sintering and densification of a ferritic stainless steel. Journal of Materials Engineering and Performance, 19(6): 880-884.
  • 21. German, R.M. and Rabin, B.H. (1985). Enhanced sintering through second phase additions. Powder Metallurgy, 28(1): 7-12.
  • 22. Madan, D.S. (1991). Enhanced sintering and property improvement in ferrous P/M compacts. International Journal of Powder Metallurgy, 27(4): 339-345.
  • 23. Zovas, P.E., German, R.M., Hwang, K.S. and Li, C.J. (1983). Activated and liquid-phase sintering – progress and problems. The Journal of The Minerals, Metals &Materials Society, 35(1): 28-33.
  • 24. Bombac, D., Fazarinc, M., Saha Podder, A. and Kugler, G. (2013). Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel. Journal of Materials Engineering and Performance, 22(3): 742–747.
  • 25. Valloton, J., Herlach, D.M. and Henein, H. (2016). Effect of convection on the dendrite growth kinetics in undercooled melts of D2 tool steels, IOP Conference Series: Materials Science and Engineering, 117: 1-5. doi:10.1088/1757-899X/117/1/012058.
  • 26. Özgün, Ö., Gülsoy, H.Ö., Yılmaz, R. and Fındık, F. (2013). Microstructural and mechanical characterization of injection molded 718 superalloy powders. Journal of Alloys Compounds, 576: 140–153.
  • 27. Özgün, Ö., Gülsoy, H.Ö., Findik, F. and Yilmaz, R. (2012). Microstructure and mechanical properties of injection moulded Nimonic-90 superalloy parts. Powder Metallurgy, 55: 405–414.
  • 28. Liao, P.K. and Spear, K.E. (1992). ASM Handbook: Alloy Phase Diagram, ASM International, Materials Park, OH.
  • 29. Narasimhan, K.S. (2001). Sintering of powder mixtures and the growth of ferrous powder metallurgy. Materials Chemistry and Physics, 67: 56–65.
  • 30. Singh, K., Khatirkar, R.K. and Sapate, S.G. (2015). Microstructure evolution and abrasive wear behavior of D2 steel. Wear, 328: 206-216.
  • 31. Mohammed, M.N., Omar, M.Z., Syarif, J., Sajuri, Z., Salleh, M.S. and Alhawari, K.S. (2013). Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel. The Scientific World Journal, 2013, 1-7.
  • 32. Keown, S.R. and Pickering, F.B. (1977). Some aspects of the occurrence of boron in alloy steels. Metal Science, 11(7): 225-234.
  • 33. Wang, L. (2010). Development of Predictive Formulae for the A1 Temperature in Creep Strength Enhanced Ferritic Steels. Master's Thesis, The Ohio State University.
Yıl 2017, Cilt: 29 Sayı: 2, 87 - 96, 01.10.2017

Öz

Kaynakça

  • 1.Budinski, K.G. (1992). Engineering Materials, Properties and Selection. Prentice Hall, New Jersey, 373–411.
  • 2. Bourithis, L., Papadimitriou, G.D. and Sideris, J. (2006).Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribology International, 39: 479–489.
  • 3. Glaeser, W.A. (1992). Materials for Tribology. Tribology Series, 20, Elsevier, 33–37.
  • 4. Roberts, G., Krauss, G. and Kennedy, R. (1998). Tool Steels. 5., ASM International, Ohio.
  • 4. Thorpe, W.R. and Chicco, B. (1985). The Fe-rich corner of the metastable C-Cr-Fe liquidus surface. Metallurgical and Materials Transactions A, 16(9): 1541–1549.
  • 5. Hamidzadeh, M.A., Meratian, M. and Zahrani, M.M. (2012). A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium. Materials Science and Engineering A, 556: 758–766.
  • 6. Tumko, A.N. (1996). Production of large forgings from high-chromium ledeburitic steels. Steel in Translation, 26: 73–76.
  • 7. Berns, H. and Broeckmant, C. (1997). Fracture of hot formed ledeburitic chromium steels. Engineering Fracture Mechanics, 58: 311–325.
  • 8. Kheirandish, S., Saghafian, H., Hedjazi, J. and Momeni, M. (2010). Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel. Journal of Iron and Steel Research, International, 17(9): 40-45.
  • 9. Novak, P., Vojtech, D. and Serak, J. (2005). Pulsed-plasma nitriding of a niobium–alloyed PM tool steel. Materials Science and Engineering A, 393: 286–293.
  • 10. Muro, P., Gimenez, S. and Iturriza, I. (2002). Sintering behaviour and fracture toughness characterization of D2 matrix tool steel, comparison with wrought and PM D2. Scripta Materialia, 46(5): 369–373.
  • 11. Ernst, I.C. and Duh, D. (2004). Properties of cold-work tool steel X155CrVMo12-1 produced via spray forming and conventional ingot casting. Journal of Materials Science, 39: 6835–6838.
  • 12. Schulz, A., Uhlenwinkel, V., Escher, C., Kohlmann, R., Kulmburg, A., Montero, M.C., Rabitsch, R., Schutzenhfer, W., Stocchi, D. and Viale, D. (2008). Opportunities and challenges of spray forming high-alloyed steels. Materials Science and Engineering A, 477: 69–79.
  • 13. Gülsoy, H.Ö., Bilici, M.K., Bozkurt, Y. and Salman, S. (2007). “Enhancing the wear properties of iron based powder metallurgy alloys by boron additions, Materials and Design, 28: 2255-2259.
  • 14. Weber, S., Theisen, W., Castro, F. and Pyzalla, A. (2009). Influence of gas atmosphere and hard particle addition on the sintering behavior of high alloyed PM cold work tool steels. Materials Science and Engineering A, 515: 175-182.
  • 15. Dudrova, E., Selecka, M., Bures, R. and Kabatova, M. (1997). Effect of boron addition on microstructure and properties of sintered Fe-1 .5Mo powder materials. ISIJ International, 37(1): 59-64.
  • 16. Bakan, H.I., Heaney, D. and German, R.M. (2001). Effect of nickel boride and boron additions on sintering characteristics of injection moulded 316L powder using water soluble binder system. Powder Metallurgy, 44(1): 235-242.
  • 17. Sercombe, T.B. (2003). Sintering of freeformed maraging steel with boron additions. Materials Science and Engineering A, 363: 242–252.
  • 18. Selecká, M., Šalak, A. and Danninger, H. (2003). The effect of boron liquid phase sintering on properties of Ni-, Mo- and Cr-alloyed structural steels. Journal of Materials Processing Technology, 141: 379–384.
  • 19. Gülsoy, H.Ö., Salman, S. and Özbek, S. (2004). Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder. Journal of Materials Science, 39: 4835-4840.
  • 20. Cabral Miramontes, J.A.C., Barceinas Sanchez, J.D.O., Almeraya Calderon, F., Martinez Villafane, A. and Chacon Nava, J.G. (2010). Effect of Boron additions on sintering and densification of a ferritic stainless steel. Journal of Materials Engineering and Performance, 19(6): 880-884.
  • 21. German, R.M. and Rabin, B.H. (1985). Enhanced sintering through second phase additions. Powder Metallurgy, 28(1): 7-12.
  • 22. Madan, D.S. (1991). Enhanced sintering and property improvement in ferrous P/M compacts. International Journal of Powder Metallurgy, 27(4): 339-345.
  • 23. Zovas, P.E., German, R.M., Hwang, K.S. and Li, C.J. (1983). Activated and liquid-phase sintering – progress and problems. The Journal of The Minerals, Metals &Materials Society, 35(1): 28-33.
  • 24. Bombac, D., Fazarinc, M., Saha Podder, A. and Kugler, G. (2013). Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel. Journal of Materials Engineering and Performance, 22(3): 742–747.
  • 25. Valloton, J., Herlach, D.M. and Henein, H. (2016). Effect of convection on the dendrite growth kinetics in undercooled melts of D2 tool steels, IOP Conference Series: Materials Science and Engineering, 117: 1-5. doi:10.1088/1757-899X/117/1/012058.
  • 26. Özgün, Ö., Gülsoy, H.Ö., Yılmaz, R. and Fındık, F. (2013). Microstructural and mechanical characterization of injection molded 718 superalloy powders. Journal of Alloys Compounds, 576: 140–153.
  • 27. Özgün, Ö., Gülsoy, H.Ö., Findik, F. and Yilmaz, R. (2012). Microstructure and mechanical properties of injection moulded Nimonic-90 superalloy parts. Powder Metallurgy, 55: 405–414.
  • 28. Liao, P.K. and Spear, K.E. (1992). ASM Handbook: Alloy Phase Diagram, ASM International, Materials Park, OH.
  • 29. Narasimhan, K.S. (2001). Sintering of powder mixtures and the growth of ferrous powder metallurgy. Materials Chemistry and Physics, 67: 56–65.
  • 30. Singh, K., Khatirkar, R.K. and Sapate, S.G. (2015). Microstructure evolution and abrasive wear behavior of D2 steel. Wear, 328: 206-216.
  • 31. Mohammed, M.N., Omar, M.Z., Syarif, J., Sajuri, Z., Salleh, M.S. and Alhawari, K.S. (2013). Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel. The Scientific World Journal, 2013, 1-7.
  • 32. Keown, S.R. and Pickering, F.B. (1977). Some aspects of the occurrence of boron in alloy steels. Metal Science, 11(7): 225-234.
  • 33. Wang, L. (2010). Development of Predictive Formulae for the A1 Temperature in Creep Strength Enhanced Ferritic Steels. Master's Thesis, The Ohio State University.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Bölüm MBD
Yazarlar

Özgür Özgün

Ali Erçetin Bu kişi benim

Zülküf Balalan Bu kişi benim

H. Özkan Gülsoy Bu kişi benim

Mahir Uzun Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 24 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 29 Sayı: 2

Kaynak Göster

APA Özgün, Ö., Erçetin, A., Balalan, Z., Gülsoy, H. Ö., vd. (2017). Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(2), 87-96.
AMA Özgün Ö, Erçetin A, Balalan Z, Gülsoy HÖ, Uzun M. Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2017;29(2):87-96.
Chicago Özgün, Özgür, Ali Erçetin, Zülküf Balalan, H. Özkan Gülsoy, ve Mahir Uzun. “Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 2 (Ekim 2017): 87-96.
EndNote Özgün Ö, Erçetin A, Balalan Z, Gülsoy HÖ, Uzun M (01 Ekim 2017) Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29 2 87–96.
IEEE Ö. Özgün, A. Erçetin, Z. Balalan, H. Ö. Gülsoy, ve M. Uzun, “Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, ss. 87–96, 2017.
ISNAD Özgün, Özgür vd. “Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 29/2 (Ekim 2017), 87-96.
JAMA Özgün Ö, Erçetin A, Balalan Z, Gülsoy HÖ, Uzun M. Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29:87–96.
MLA Özgün, Özgür vd. “Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 2, 2017, ss. 87-96.
Vancouver Özgün Ö, Erçetin A, Balalan Z, Gülsoy HÖ, Uzun M. Bor İlavesinin Toz Metal D2 Takım Çeliğinin Mikroyapı ve Mekanik Özelliklerine Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2017;29(2):87-96.