GTAW Yöntemi ile Oluşturulan FeB-FeTi-FeW-C Kaplamalarının Mikroyapı ve Adhesiv Aşınma Davranışının İncelenmesi
Yıl 2017,
Cilt: 29 Sayı: 2, 203 - 212, 01.10.2017
Zülküf Balalan
,
Mehmet Yaz
Serdar Osman Yılmaz
Öz
Bu çalışmada; FeB FeTi ,FeW ve grafit tozları, kullanılarak düşük karbonlu (%0,15 C) çeliğin yüzeyi, farklı işlem parametrelerinde, Gaz Tungsten Ark Kaynak yöntemiyle (TIG) kaplanmıştır Elde edilen kaplama yüzeyinin mikroyapısı, optik mikroskop (OM) ve taramalı elektron mikroskobunda (SEM) incelenmiştir. Mikrosertlik ve kuru-sürtünme aşınma deneyleri yapılmıştır. Yoğun enerjili X ışını analizi (EDS) ile alaşım elementlerinin yüzeyden altlık malzemesine doğru dağılımı araştırılmıştır. Kaplama bölgesinin mikroyapısında karbür ve borürlerin oluştuğu gözlenmiştir. Elde edilen sert yüzey kaplamalarında oluşan karbür ve borürlerin şekilleri üçgenden düz kareye dönüşmüştür.
Kaynakça
- 1. Buytoz, S., Ulutan, M. and Yildirim, M.M. (2005). “Dry sliding wear behavior of TIG welding clad WC composite coatings”, Applied Surface Science, 252 (Iss. 5): 1313-1323.
- 2. Gemelli, E., Gallerie, A., Kopp, F.C.T. and Camargo, N.H.A. (2005). “Improved surface properties of D2 steel by laser surface alloying”, Journal of Materials Science, 40,:5649–5653.
- 3. Pashby, I.R., Barnes, S. and Bryden, B.G. (2003). “Surface hardening of steel using a high power diode laser”, Journal of Materials Processing Technology, 139: 585–588.
- 4. Yildirim, M.M., Buytoz, S. and Ulutan, M. (2007). “Microstructural Changes to SiC Coated Metallic Surfaces Produced by the TIG Welding Process on a 45Mn5 Steel”, Prakt. Metallogr., 44 (2): 59-69.
- 5. Wu, X. and Chen, G. (1999). “Nonequilibrium microstructures and their evolution in a Fe– Cr–W– Ni–C laser clad coating”, Materials Science and Engineering, A270: 183–189.
- 6. Khedkar, J., Khanna, A.S. and Gupt, K.M. (1997). “Tribological behaviour of plasma and laser coated steels”, Wear, 205: 220-227.
- 7. Korkut, M.H., Yılmaz, O. and Buytoz, S. (2002). “Effect of aging on the microstructure and toughness of the interface zone of a gas tungsten arc (GTA) synthesized Fe–Cr–Si–Mo–C coated low carbon steel”, Surface and Coatings Technology, 157: 5–13.
- 8. Yılmaz, S.O. (2005). Wear behavior of gas tungsten arc deposited FeCrC, FeCrSi, and WCo coatings on AISI-1018 steel, Surface and Coatings Technology, 194, 175–83.
- 9. Matijevi´c, B. and Stupnišek, M. (2009). Novelty in diffusion coating technology, Materials and Manufacturing Processes, 24: 887–893.
- 10. Fujita, H. and Arai, T. (1985). Carbide coatings in molten Borax bath- growth mechanism of layer, Properties and Application, Proceedings of the 4th Int. Congress of IFHT. Berlin, 1109–1124.
- 11.. Ma, Z.Y. and Tjong, L. (2000). Gen. In-situ Ti–TiB metal–matrix composite prepared by a reactive pressing process, Scripta Materialia;42(4): 367–373.
- 12. Yılmaz, S.O., Ozenbas, M. and Yaz, M. (2009). Synthesis of TiB2-reinforced iron-based composite,
Coating, Tribology International, 42: 1220–1229.
- 13. Bourithis, L., Papaefthymiou, S. and Papadimitriou, G. D. (2002). Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties, Applied Surface Science, 200(1-4), 203-218.
- 14. Darabara, M., Papadimitriou, G.D. and Bourithis, L. (2006). Production of Fe–B–TiB2 metal matrix composites on steel surface, Surface & Coatings Technology, 201: 3518–3523.
- 15. Buchely, M.F., Gutierrez, J.C., Leon, L.M. and Toro, A. (2005), The effect of microstructure on abrasive wear of hardfacing alloys, Wear, 259: 52–61.
- 16. Berns, H. (1995). Microstructural properties of wear resistant alloys, Wear ,181: 271–279.
- 17. Kirchgaßner, M., Badisch, E. and Franek, F. (2008). Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear, 265: 772–779.
- 18. Xiaolei, W. and Guanguan, C. (1999). Material Science and Engineering, 270, 183.
- 19. Zhang, L., Liu, B., Yu, H. and Sun, D. (2007). Rapidly solidified non-equilibrium microstructure and phase transformation of plasma cladding Fe-based alloy coating. Surface & Coatings Technology, 201: 5931–5936.
- 20. Eroglu, M. (2009). Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness. Surface & Coatings Technology, 203: 2229–2235.
- 21. Kulka, M., Makuch, N., Dziarski, P., Piasecki, A. and Miklaszewski, A. (2014). Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt. Laser Technol., 56: 409–424.
- 22. Li, G.J., Li, J. and Luo, X. (2015). Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate. Opt. Laser Technol., 65: 66–75.
- 23. Laird, G., Gundlach, R. and Rohrig, K. (2000). Abrasion-resistant cast iron handbook. Illinois: American Foundry Society, p. 72.
- 24. Yaz, M. (2013). In situ formation of square shaped Fe2B borides in coated surface produced by GTAW, JOAM, 15: 1037 – 1046.
Yıl 2017,
Cilt: 29 Sayı: 2, 203 - 212, 01.10.2017
Zülküf Balalan
,
Mehmet Yaz
Serdar Osman Yılmaz
Kaynakça
- 1. Buytoz, S., Ulutan, M. and Yildirim, M.M. (2005). “Dry sliding wear behavior of TIG welding clad WC composite coatings”, Applied Surface Science, 252 (Iss. 5): 1313-1323.
- 2. Gemelli, E., Gallerie, A., Kopp, F.C.T. and Camargo, N.H.A. (2005). “Improved surface properties of D2 steel by laser surface alloying”, Journal of Materials Science, 40,:5649–5653.
- 3. Pashby, I.R., Barnes, S. and Bryden, B.G. (2003). “Surface hardening of steel using a high power diode laser”, Journal of Materials Processing Technology, 139: 585–588.
- 4. Yildirim, M.M., Buytoz, S. and Ulutan, M. (2007). “Microstructural Changes to SiC Coated Metallic Surfaces Produced by the TIG Welding Process on a 45Mn5 Steel”, Prakt. Metallogr., 44 (2): 59-69.
- 5. Wu, X. and Chen, G. (1999). “Nonequilibrium microstructures and their evolution in a Fe– Cr–W– Ni–C laser clad coating”, Materials Science and Engineering, A270: 183–189.
- 6. Khedkar, J., Khanna, A.S. and Gupt, K.M. (1997). “Tribological behaviour of plasma and laser coated steels”, Wear, 205: 220-227.
- 7. Korkut, M.H., Yılmaz, O. and Buytoz, S. (2002). “Effect of aging on the microstructure and toughness of the interface zone of a gas tungsten arc (GTA) synthesized Fe–Cr–Si–Mo–C coated low carbon steel”, Surface and Coatings Technology, 157: 5–13.
- 8. Yılmaz, S.O. (2005). Wear behavior of gas tungsten arc deposited FeCrC, FeCrSi, and WCo coatings on AISI-1018 steel, Surface and Coatings Technology, 194, 175–83.
- 9. Matijevi´c, B. and Stupnišek, M. (2009). Novelty in diffusion coating technology, Materials and Manufacturing Processes, 24: 887–893.
- 10. Fujita, H. and Arai, T. (1985). Carbide coatings in molten Borax bath- growth mechanism of layer, Properties and Application, Proceedings of the 4th Int. Congress of IFHT. Berlin, 1109–1124.
- 11.. Ma, Z.Y. and Tjong, L. (2000). Gen. In-situ Ti–TiB metal–matrix composite prepared by a reactive pressing process, Scripta Materialia;42(4): 367–373.
- 12. Yılmaz, S.O., Ozenbas, M. and Yaz, M. (2009). Synthesis of TiB2-reinforced iron-based composite,
Coating, Tribology International, 42: 1220–1229.
- 13. Bourithis, L., Papaefthymiou, S. and Papadimitriou, G. D. (2002). Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties, Applied Surface Science, 200(1-4), 203-218.
- 14. Darabara, M., Papadimitriou, G.D. and Bourithis, L. (2006). Production of Fe–B–TiB2 metal matrix composites on steel surface, Surface & Coatings Technology, 201: 3518–3523.
- 15. Buchely, M.F., Gutierrez, J.C., Leon, L.M. and Toro, A. (2005), The effect of microstructure on abrasive wear of hardfacing alloys, Wear, 259: 52–61.
- 16. Berns, H. (1995). Microstructural properties of wear resistant alloys, Wear ,181: 271–279.
- 17. Kirchgaßner, M., Badisch, E. and Franek, F. (2008). Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear, 265: 772–779.
- 18. Xiaolei, W. and Guanguan, C. (1999). Material Science and Engineering, 270, 183.
- 19. Zhang, L., Liu, B., Yu, H. and Sun, D. (2007). Rapidly solidified non-equilibrium microstructure and phase transformation of plasma cladding Fe-based alloy coating. Surface & Coatings Technology, 201: 5931–5936.
- 20. Eroglu, M. (2009). Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness. Surface & Coatings Technology, 203: 2229–2235.
- 21. Kulka, M., Makuch, N., Dziarski, P., Piasecki, A. and Miklaszewski, A. (2014). Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt. Laser Technol., 56: 409–424.
- 22. Li, G.J., Li, J. and Luo, X. (2015). Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate. Opt. Laser Technol., 65: 66–75.
- 23. Laird, G., Gundlach, R. and Rohrig, K. (2000). Abrasion-resistant cast iron handbook. Illinois: American Foundry Society, p. 72.
- 24. Yaz, M. (2013). In situ formation of square shaped Fe2B borides in coated surface produced by GTAW, JOAM, 15: 1037 – 1046.