Araştırma Makalesi
BibTex RIS Kaynak Göster

SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi

Yıl 2019, Cilt: 31 Sayı: 1, 167 - 176, 15.03.2019

Öz

Yanma yöntemi kullanılarak Ferritik paslanmaz çelik yüzeyi
üzerine Ni3Al intermetalik bileşiği kaplanmıştır. Bu kaplama
yönteminde kullanılan presleme basıncı(150, 200, 250, 300Mpa) ve yanma işlemi
akabinde gerçekleştirilen sinterleme sıcaklığının(1100
C) kaplama tabakasına
etkisi incelenmiştir.
Kaplama tabakasının karakterizasyon işlemleri optik mikroskop, SEM, XRD
ve EDX analizleri kullanılarak gerçekleştirilmiştir. Analizler sonucunda
kaplama tabakası ile alt tabaka arasında gerçekleşen difüzyon ile bağlanmanın
iyi olduğu gözlenmiştir. EDS analizleri sonucunda
α Fe,Cr, Ni, Ni3Al,
γ Fe ve XRD sonuçlarında ise Ni3Al ve Ni ile birlikte Ni3Al4,
NiAl, Ni3Cr2,  Ni2Al3
fazları meydana gelmiştir.
Yapılan mikrosertlik analizlerinde ise kaplama tabakasının gözenekli yapısı
nedeniyle alt tabakaya göre daha düşük sonuçlar elde edilmiştir. Sonuç olarak
1100
C’lik sinterleme
sıcaklığında metaller arası fazların tamemen çözündüğü tespit edilmiştir.

Kaynakça

  • [1] N’Dah E., Tsipas S., Hierro M.P., Pérez F.J. Study of the cyclic oxidation resistance of Al coated ferritic steels with 9 and Cr, J. Corros. Sci. Eng., 2007; 49: 3850–3865. [2] Cakir K. Korkmaz E., Kayali S. Study on the Al2O3/Fe-Al intermetallic duplex coating prepared with a combined technique of electro-spark deposition and micro-arc oxidation on steel, Kovove Mater., 2017; 55: 81–87 [3] Özenbaş M., Yılmaz, O. FeCrC, WC ve B203 Kullanılarak Kaplanmış AISI4340 Çeliğinin Aşınma Karakteristiği. Il.Uluslararası Bor Sempozyumu; 2004; Eskişehir /Türkiye. 201-205. [4] Talako T., Ilyuschenko A., Letsko A. SHS Powders for Thermal Spray Coating, Kona Powder Part. J., 2009; 27: 55-72. [5] Mohammadnezhad M., Shamanian M., Enayati M.H., Salehi M., Hoseynian A. Microstructures and properties of NiAl–TiC nanocomposite coatings on carbon steel surfaces produced by mechanical alloying technique, Surf. Coat. Technol., 2014; 238: 180–187. [6] Yoruk, G., Ozdemir O.,The evaluation of NiAl- and TiAl-based intermetallic coatings produced on the AISI 1010 steel by an electric current-activated sintering method, Intermetallics, 2012; 25: 60-65. [7] Singh Sidhu B., Prakash S. Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 oC, Surf. Coat. Technol., 2003; 166: 89–100. [8] Shahzad A., Zadorozhnyy V. Yu., Pavlov M.D., Zheleznyi M.V., Chirkov A.M., Zagrebin D.S., Semenov D.V., Khasenova R.S., Kaloshkin S.D. Deposition of the Ti-Al coatings on different metallic substrates by mechanical alloying and subsequent laser treatment, J. Alloys Compd., 2018; 731: 1295-1302. [9] Li Y., Liu Y., Geng H., Nie D. Synthesis and cladding of Ni3Al intermetallic on steel substrate by laser controlled reactive synthesis, J. Mater. Process. Technol., 2006; 171: 405–410. [10] Lin, C-M., Kai, W-Y., Su C-Y., Key K-H. Empirical alloys-by-design theory calculations to the microstructure evolution mechanical properties of Mo-doped laser cladding NiAl composite coatings on medium carbon steel substrates, J. Alloy Compd., 2017; 702: 679-686. [11] Koch C. C., Whittenberge J. D. Review Mechanical milling/alloying of intermetallics, Intermetallic, 1996; 4: 339-355. [12] Ozdemir O., Zeytin S., C. Bindal C. Tribological properties of Ni3Al produced by pressure-assisted volume combustion synthesis, Tribol. Int., 2012; 53: 22–27. [13] Lin L., Hui S., Lu G., Wang S-L., Wang X-D., Lee D-J. Molecular dynamics study of high temperature wetting kinetics for Al/NiAl and Al/Ni3Al systems: Effects of grain boundaries, Chem. Eng. Sci., 2017; 174: 127–135. [14] Morsi K., Review: reaction synthesis processing of Ni–Al intermetallic materials, Mater. Sci. Eng., 2001; A299: 1–15. [15] Liu H., Chen W. Reactive oxide-dispersed Ni3Al intermetallic coatings by sediment co-deposition, Intermetallics, 2005; 13: 805–817. [16] Li S., Feng D., Luo H. Microstructure and abrasive wear performance of chromium carbide reinforced Ni3Al matrix composite coating, Surf. Coat. Technol., 2007; 201; 4542–4546. [17] Chen J., Huang H., Zhang K., Wang M., Wu M., Li H., Zhang S., Wen M. Interfacial reactions in the SiCf/Ni3Al composites by employing C single coating and C+Y2O3 duplex coating as barrier layers, J. Alloys Compd., 2018; 765: 18-26 [18] Stewart L.T., Plucknett P.K. The effects of Mo2C additions on the microstructure and sliding wear of TiC0.3N0.7–Ni3Al cermets, Int. J. Refract. Met. Hard Mater., 2015; 50: 227–239. [19] Luis I, C.N. Transition metal aluminid Coatings and Initial Steps on Additive Manufacturing, 20.12.2017, https://cdn.intechopen.com/pdfs/58790.pdf. [20] Tong Z., Bao H. Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations, Int. J. Heat Mass Transfer, 2018; 117: 972–977. [21] Nazarov A., Safronov A. V., Khmyrov S. R., Shishkovsky I. Fabrication of gradient structures in the Ni - Al system via SLM Process, Procedia IUTAM, 2017; 23: 161 – 166. [22] Li-Yuan S., Ting-Fei X., Chen L., Jian-Ting G., Yu-Feng Z. Effect of extrusion process on microstructure and mechanical properties of Ni3Al_B_Cr alloy during self-propagation high-temperature synthesis, Trans. Nonferrous Met. Soc. China, 2012; 22: 489_495. [23] Yamaguchi T., Hagino H. Formation of a titanium-carbide-dispersed hard coating on austenitic stainless steel by laser alloying with a light-transmitting resin, Vacuum, 2018; 155: 23–28. [24] Xiang, X., Wang X., Zhang G., Tang T., Lai X. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review, Int. J. Hydrogen Energy, 2015; 40: 3697- 3707. [25] Sierra C., Vázquez J.A. NiAl coatings on carbon steel by self-propagating high-temperature synthesis assisted with concentrated solar energy: mass influence on adherence and porosity, Sol. Energy Mater. Sol. Cells, 2005; 86: 33–42. [26] Cammarota G.P., Casagrande A., Poli G., Veronesi P. Ni–Al–Ti coatings obtained by microwave assisted SHS: Effect of annealing on microstructural and mechanical properties, Surface & Coatings Technology, 2009; 203: 1429–1437. [27] Boromei, A., Casagrande F., Tarterini G., Poli P., Rosa R.V. Ni–Al–Ti coatings obtained by microwave assisted SHS: Oxidation behaviour in the 750–900 °C range, Surf. Coat. Technol., 2010; 204: 1793–1799. [28] Ozdemir O., Zeytin S., Bindal C. A study on NiAl produced by pressure-assisted combustion synthesis, Vacuum, 2010; 84: 430–437. [29] Riyadi T.W.B., Zhang T., Marchant D., Zhu X. Synthesis and fabrication of NiAl coatings with Ti underlayer using induction heating, Surf. Coat. Technol., 2014; 258: 154–159. [30] Zanotti C., Giuliani P., Terrosu A., Gennari S., Maglia F., Porous Ni -Ti,ignition and combustion synthesis, Intermetallics, 2007; 15: 404-412. [31] Goh C.W., Gu Y.W., Lim C.S., Tay B.Y., Influence of nanocrystalline Ni-Ti reaction agent on self-propagating high-temperature synthesized porous NiTi”, Intermetallics, 2007; 15: 461-467. [32] La P., Bai M., Xue Q., Liu W., A study of Ni3Al coating on carbon steel surface via the SHS casting route, Surf. Coat. Technol., 1999; 113: 44–51. [33] Pascal C., Marin-Ayral R.M., Tédenac J.C. Joining of nickel monoaluminide to a superalloy substrate by high pressure self-propagating high-temperature synthesis, J. Alloys Compd, 2002; 337: 221–225. [34] Kılıç M., Beken B., Kırık İ., Özdemir N. Kendi İlerliyen Yüksek Sıcaklık Sentezlemesi İle Ferritik paslanmaz Çelik Üzerine Ni3Al’nin Kaplanması Ve Mikroyapı İncelemesi, International Conference on Material Science and Technology in Cappadocia (IMSTEC’16), April 6-8, 2016, 66-72, Nevsehir, Turkey. [35] Chen, Y., Chung D.D.L. Nickel aluminid (Ni3Al) by reaktive infiltration , J. Mater. Sci, 1996; 31: 2117-2122.http://wings.buffalo.edu/academic/department/eng/mae/cmrl/Nickel%20aluminide%20fabricated%20by%20reactive%20infiltration.pdf 15.11.2015. [36] https://www.asminternational.org/ 10.11.2015 [37] Tosun G., Özler L., Kaya M., Orhan N. SHS yöntemi ile üretilen NiTi alaşımlarının gözenek oranının incelenmesi, 5th International Powder Metallurgy Conference, 2008; 1353-1367, Ankara, Turkey. [38] Wang W., Yang B., Du L., Zhang W. Diffusion research between Ni3Al coating and titanium alloy produced by plasma spraying process, Appl. Surf. Sci., 2010; 256: 3342–3345. [39] Podrabinnika A.P., Shishkovsky V.I. Laser post annealing of cold-sprayed Al–Ni composite coatings for green energy tasks, Procedia IUTAM, 2017; 23: 108 – 113. [40] Wang L-L., Wang W., Fan L–Y., Qı X-X., Lıu H-J., Zhang Y-Z. Effects of Al and Ni doping on oxidation and corrosion resistance of electrophoretic deposited YSZ coatings, Trans. Nonferrous Met. Soc. China, 2017; 27: 1551−1557. [41] Chen D., Luo F., Lou X., Qing Y., Zhou W., Zhu D. Comparison of thermal insulation capability between conventional and nanostructured plasma sprayed YSZ coating on Ni3Al substrates, Ceram. Int., 2017; 43: 4324–4329. [42] La P., Baı M., Xue O., Lıu W, A study of Ni3Al coating on carbon steel surface via the SHS casting route, Surf. Coat. Technol., 1999; 113: pp. 44-51. [43] Kotoban D., Nazarov A., Shishkovsky I. Comparative Study of Selective Laser Melting and Direct Laser Metal Deposition of Ni3Al Intermetallic Alloy, Procedia IUTAM, 2017; 23: 138 – 146. [44] Sidhu S.B., Prakash S. Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 oC, Surf. Coat. Technol., 2003; 166: 89–100. [45] Ellner M., Keli S., Predel B. Ni3Al4 – A phone with ordered vacancies isotypic to Ni3Ga4, J. Less- Common Metals, (1989), V.154-1207-215. [46] Mishın Y. Atomistic modeling of γ and γ’-phases of the Ni-Al system , Acta mater., 2004; 52: 1451 - 1465. [47] Al – Aql A.A., Al- Salhi M.S., Ansari M.I. Precipitation in Ni-35 at pct Cr Alloy, J.Mater. Sci. Technol., 2002; V 18: No:177-79. [48] Pogrebnjak A., Beresnev V.M. Hard Nanocomposite Coatings, Their Structure and Properties, 2012; Chapter 6: 13-160, http://dx.doi.org/10.5772/50567. [49] Mishra B.S., Chandra K., Prakash S., Venkataraman B. Characterisation and erosion behaviour of a plasma sprayed Ni3Al coating on a Fe-based superalloy, Mater. Lett., 2005; 59: 3694 – 3698.
Yıl 2019, Cilt: 31 Sayı: 1, 167 - 176, 15.03.2019

Öz

Kaynakça

  • [1] N’Dah E., Tsipas S., Hierro M.P., Pérez F.J. Study of the cyclic oxidation resistance of Al coated ferritic steels with 9 and Cr, J. Corros. Sci. Eng., 2007; 49: 3850–3865. [2] Cakir K. Korkmaz E., Kayali S. Study on the Al2O3/Fe-Al intermetallic duplex coating prepared with a combined technique of electro-spark deposition and micro-arc oxidation on steel, Kovove Mater., 2017; 55: 81–87 [3] Özenbaş M., Yılmaz, O. FeCrC, WC ve B203 Kullanılarak Kaplanmış AISI4340 Çeliğinin Aşınma Karakteristiği. Il.Uluslararası Bor Sempozyumu; 2004; Eskişehir /Türkiye. 201-205. [4] Talako T., Ilyuschenko A., Letsko A. SHS Powders for Thermal Spray Coating, Kona Powder Part. J., 2009; 27: 55-72. [5] Mohammadnezhad M., Shamanian M., Enayati M.H., Salehi M., Hoseynian A. Microstructures and properties of NiAl–TiC nanocomposite coatings on carbon steel surfaces produced by mechanical alloying technique, Surf. Coat. Technol., 2014; 238: 180–187. [6] Yoruk, G., Ozdemir O.,The evaluation of NiAl- and TiAl-based intermetallic coatings produced on the AISI 1010 steel by an electric current-activated sintering method, Intermetallics, 2012; 25: 60-65. [7] Singh Sidhu B., Prakash S. Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 oC, Surf. Coat. Technol., 2003; 166: 89–100. [8] Shahzad A., Zadorozhnyy V. Yu., Pavlov M.D., Zheleznyi M.V., Chirkov A.M., Zagrebin D.S., Semenov D.V., Khasenova R.S., Kaloshkin S.D. Deposition of the Ti-Al coatings on different metallic substrates by mechanical alloying and subsequent laser treatment, J. Alloys Compd., 2018; 731: 1295-1302. [9] Li Y., Liu Y., Geng H., Nie D. Synthesis and cladding of Ni3Al intermetallic on steel substrate by laser controlled reactive synthesis, J. Mater. Process. Technol., 2006; 171: 405–410. [10] Lin, C-M., Kai, W-Y., Su C-Y., Key K-H. Empirical alloys-by-design theory calculations to the microstructure evolution mechanical properties of Mo-doped laser cladding NiAl composite coatings on medium carbon steel substrates, J. Alloy Compd., 2017; 702: 679-686. [11] Koch C. C., Whittenberge J. D. Review Mechanical milling/alloying of intermetallics, Intermetallic, 1996; 4: 339-355. [12] Ozdemir O., Zeytin S., C. Bindal C. Tribological properties of Ni3Al produced by pressure-assisted volume combustion synthesis, Tribol. Int., 2012; 53: 22–27. [13] Lin L., Hui S., Lu G., Wang S-L., Wang X-D., Lee D-J. Molecular dynamics study of high temperature wetting kinetics for Al/NiAl and Al/Ni3Al systems: Effects of grain boundaries, Chem. Eng. Sci., 2017; 174: 127–135. [14] Morsi K., Review: reaction synthesis processing of Ni–Al intermetallic materials, Mater. Sci. Eng., 2001; A299: 1–15. [15] Liu H., Chen W. Reactive oxide-dispersed Ni3Al intermetallic coatings by sediment co-deposition, Intermetallics, 2005; 13: 805–817. [16] Li S., Feng D., Luo H. Microstructure and abrasive wear performance of chromium carbide reinforced Ni3Al matrix composite coating, Surf. Coat. Technol., 2007; 201; 4542–4546. [17] Chen J., Huang H., Zhang K., Wang M., Wu M., Li H., Zhang S., Wen M. Interfacial reactions in the SiCf/Ni3Al composites by employing C single coating and C+Y2O3 duplex coating as barrier layers, J. Alloys Compd., 2018; 765: 18-26 [18] Stewart L.T., Plucknett P.K. The effects of Mo2C additions on the microstructure and sliding wear of TiC0.3N0.7–Ni3Al cermets, Int. J. Refract. Met. Hard Mater., 2015; 50: 227–239. [19] Luis I, C.N. Transition metal aluminid Coatings and Initial Steps on Additive Manufacturing, 20.12.2017, https://cdn.intechopen.com/pdfs/58790.pdf. [20] Tong Z., Bao H. Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations, Int. J. Heat Mass Transfer, 2018; 117: 972–977. [21] Nazarov A., Safronov A. V., Khmyrov S. R., Shishkovsky I. Fabrication of gradient structures in the Ni - Al system via SLM Process, Procedia IUTAM, 2017; 23: 161 – 166. [22] Li-Yuan S., Ting-Fei X., Chen L., Jian-Ting G., Yu-Feng Z. Effect of extrusion process on microstructure and mechanical properties of Ni3Al_B_Cr alloy during self-propagation high-temperature synthesis, Trans. Nonferrous Met. Soc. China, 2012; 22: 489_495. [23] Yamaguchi T., Hagino H. Formation of a titanium-carbide-dispersed hard coating on austenitic stainless steel by laser alloying with a light-transmitting resin, Vacuum, 2018; 155: 23–28. [24] Xiang, X., Wang X., Zhang G., Tang T., Lai X. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review, Int. J. Hydrogen Energy, 2015; 40: 3697- 3707. [25] Sierra C., Vázquez J.A. NiAl coatings on carbon steel by self-propagating high-temperature synthesis assisted with concentrated solar energy: mass influence on adherence and porosity, Sol. Energy Mater. Sol. Cells, 2005; 86: 33–42. [26] Cammarota G.P., Casagrande A., Poli G., Veronesi P. Ni–Al–Ti coatings obtained by microwave assisted SHS: Effect of annealing on microstructural and mechanical properties, Surface & Coatings Technology, 2009; 203: 1429–1437. [27] Boromei, A., Casagrande F., Tarterini G., Poli P., Rosa R.V. Ni–Al–Ti coatings obtained by microwave assisted SHS: Oxidation behaviour in the 750–900 °C range, Surf. Coat. Technol., 2010; 204: 1793–1799. [28] Ozdemir O., Zeytin S., Bindal C. A study on NiAl produced by pressure-assisted combustion synthesis, Vacuum, 2010; 84: 430–437. [29] Riyadi T.W.B., Zhang T., Marchant D., Zhu X. Synthesis and fabrication of NiAl coatings with Ti underlayer using induction heating, Surf. Coat. Technol., 2014; 258: 154–159. [30] Zanotti C., Giuliani P., Terrosu A., Gennari S., Maglia F., Porous Ni -Ti,ignition and combustion synthesis, Intermetallics, 2007; 15: 404-412. [31] Goh C.W., Gu Y.W., Lim C.S., Tay B.Y., Influence of nanocrystalline Ni-Ti reaction agent on self-propagating high-temperature synthesized porous NiTi”, Intermetallics, 2007; 15: 461-467. [32] La P., Bai M., Xue Q., Liu W., A study of Ni3Al coating on carbon steel surface via the SHS casting route, Surf. Coat. Technol., 1999; 113: 44–51. [33] Pascal C., Marin-Ayral R.M., Tédenac J.C. Joining of nickel monoaluminide to a superalloy substrate by high pressure self-propagating high-temperature synthesis, J. Alloys Compd, 2002; 337: 221–225. [34] Kılıç M., Beken B., Kırık İ., Özdemir N. Kendi İlerliyen Yüksek Sıcaklık Sentezlemesi İle Ferritik paslanmaz Çelik Üzerine Ni3Al’nin Kaplanması Ve Mikroyapı İncelemesi, International Conference on Material Science and Technology in Cappadocia (IMSTEC’16), April 6-8, 2016, 66-72, Nevsehir, Turkey. [35] Chen, Y., Chung D.D.L. Nickel aluminid (Ni3Al) by reaktive infiltration , J. Mater. Sci, 1996; 31: 2117-2122.http://wings.buffalo.edu/academic/department/eng/mae/cmrl/Nickel%20aluminide%20fabricated%20by%20reactive%20infiltration.pdf 15.11.2015. [36] https://www.asminternational.org/ 10.11.2015 [37] Tosun G., Özler L., Kaya M., Orhan N. SHS yöntemi ile üretilen NiTi alaşımlarının gözenek oranının incelenmesi, 5th International Powder Metallurgy Conference, 2008; 1353-1367, Ankara, Turkey. [38] Wang W., Yang B., Du L., Zhang W. Diffusion research between Ni3Al coating and titanium alloy produced by plasma spraying process, Appl. Surf. Sci., 2010; 256: 3342–3345. [39] Podrabinnika A.P., Shishkovsky V.I. Laser post annealing of cold-sprayed Al–Ni composite coatings for green energy tasks, Procedia IUTAM, 2017; 23: 108 – 113. [40] Wang L-L., Wang W., Fan L–Y., Qı X-X., Lıu H-J., Zhang Y-Z. Effects of Al and Ni doping on oxidation and corrosion resistance of electrophoretic deposited YSZ coatings, Trans. Nonferrous Met. Soc. China, 2017; 27: 1551−1557. [41] Chen D., Luo F., Lou X., Qing Y., Zhou W., Zhu D. Comparison of thermal insulation capability between conventional and nanostructured plasma sprayed YSZ coating on Ni3Al substrates, Ceram. Int., 2017; 43: 4324–4329. [42] La P., Baı M., Xue O., Lıu W, A study of Ni3Al coating on carbon steel surface via the SHS casting route, Surf. Coat. Technol., 1999; 113: pp. 44-51. [43] Kotoban D., Nazarov A., Shishkovsky I. Comparative Study of Selective Laser Melting and Direct Laser Metal Deposition of Ni3Al Intermetallic Alloy, Procedia IUTAM, 2017; 23: 138 – 146. [44] Sidhu S.B., Prakash S. Evaluation of the corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 oC, Surf. Coat. Technol., 2003; 166: 89–100. [45] Ellner M., Keli S., Predel B. Ni3Al4 – A phone with ordered vacancies isotypic to Ni3Ga4, J. Less- Common Metals, (1989), V.154-1207-215. [46] Mishın Y. Atomistic modeling of γ and γ’-phases of the Ni-Al system , Acta mater., 2004; 52: 1451 - 1465. [47] Al – Aql A.A., Al- Salhi M.S., Ansari M.I. Precipitation in Ni-35 at pct Cr Alloy, J.Mater. Sci. Technol., 2002; V 18: No:177-79. [48] Pogrebnjak A., Beresnev V.M. Hard Nanocomposite Coatings, Their Structure and Properties, 2012; Chapter 6: 13-160, http://dx.doi.org/10.5772/50567. [49] Mishra B.S., Chandra K., Prakash S., Venkataraman B. Characterisation and erosion behaviour of a plasma sprayed Ni3Al coating on a Fe-based superalloy, Mater. Lett., 2005; 59: 3694 – 3698.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Musa Kılıç 0000-0001-5808-6917

Mustafa Beken 0000-0001-8164-0242

Niyazi Özdemir 0000-0001-8796-0060

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 20 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 31 Sayı: 1

Kaynak Göster

APA Kılıç, M., Beken, M., & Özdemir, N. (2019). SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 167-176.
AMA Kılıç M, Beken M, Özdemir N. SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2019;31(1):167-176.
Chicago Kılıç, Musa, Mustafa Beken, ve Niyazi Özdemir. “SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 1 (Mart 2019): 167-76.
EndNote Kılıç M, Beken M, Özdemir N (01 Mart 2019) SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31 1 167–176.
IEEE M. Kılıç, M. Beken, ve N. Özdemir, “SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, ss. 167–176, 2019.
ISNAD Kılıç, Musa vd. “SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 31/1 (Mart 2019), 167-176.
JAMA Kılıç M, Beken M, Özdemir N. SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019;31:167–176.
MLA Kılıç, Musa vd. “SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, 2019, ss. 167-76.
Vancouver Kılıç M, Beken M, Özdemir N. SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019;31(1):167-76.