Araştırma Makalesi
BibTex RIS Kaynak Göster

Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması

Yıl 2020, Cilt: 32 Sayı: 1, 203 - 209, 03.03.2020
https://doi.org/10.35234/fumbd.661955

Öz

Epilespi dünyadaki her yüz kişiden birinin sıkıntı çektiği en yaygın nörolojik hastalıklardan biridir. Gerçekleşecek bir nöbetin önceden tahmin edilebilmesi, epilepsi hastalarının yaşam kalitesinin artırılmasında önemli bir rol oynayacaktır. Ayrıca, etkili bir nöbet tahmin sistemi, hastalığın daha kontrol edilebilir olmasını sağlayacaktır. Bu çalışmada, Elektroansefalogram (EEG) sinyallerindeki interiktal ve preiktal beyin aktivitelerini ayırt etmek için bir yöntem önerilmiştir. Önerilen yöntemde, yeni bir sinir ağı modeli olan kapsül ağları kullanılmıştır. Preiktal aktivite, nöbet başlangıcından 30dk ileride seçilmiştir. Preiktal ve interiktal kısımlar kayan pencere ile segmentlere ayrılmış ve her segmentin spektrogram görüntüleri elde edilmiştir. Spektrogram görüntüleri, kapsül ağları kullanılarak C3-P3 için ortalama %94.05 doğruluk ile sınıflandırılmıştır. Bu çalışma ile kapsül ağlarının preiktal/interiktal sınıflandırma başarımı incelenmiştir. Elde edilen sonuçlar, kapsül ağlarının epilepsinin tahmini için umut verici bir yöntem olduğunu göstermektedir.

Kaynakça

  • [1] Hussain L. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn Neurodyn 2018;12 (3):271–294.
  • [2] Tsiouris KM, Pezoulas VC, Koutsouris DD, Zervakis M, Fotiadis DI. Discrimination of Preictal and Interictal Brain States from Long-Term EEG Data. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, pp 318–323
  • [3] Yinxia L, Weidong Z, Qi Y, Shuangshuang C. Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012;20 (6):749–755.
  • [4] Zhang Z, Parhi KK. Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power. IEEE Trans Biomed Circuits Syst 2016;10 (3):693–706.
  • [5] Cho D, Min B, Kim J, Lee B. EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition. IEEE Trans Neural Syst Rehabil Eng 2017;25 (8):1309–1318.
  • [6] Ramgopal S, Thome-Souza S, Jackson M, Kadish NE, Sánchez Fernández I, Klehm J, Bosl W, Reinsberger C, Schachter S, Loddenkemper T. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav 2014;37 291–307.
  • [7] Alotaiby TN, Alshebeili SA, Alshawi T, Ahmad I, Abd El-Samie FE. EEG seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 2014;2014 (1):183.
  • [8] Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, Tan RS, Chen M, Acharya UR. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med 2018;94 19–26.
  • [9] Arslan Tuncer S, Akılotu B, Toraman S. A deep learning-based decision support system for diagnosis of OSAS using PTT signals. Med Hypotheses. doi: 10.1016/j.mehy.2019.03.026
  • [10] Yildirim O, Baloglu UB, Tan R-S, Ciaccio EJ, Acharya UR. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput Methods Programs Biomed 2019;176 121–133.
  • [11] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 2018;161 103–113.
  • [12] Giri EP, Fanany MI, Arymurthy AM, Wijaya SK. Ischemic stroke identification based on EEG and EOG using ID convolutional neural network and batch normalization. 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, pp 484–491
  • [13] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 2007;4 (2):R1–R13.
  • [14] Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav 2018;88 251–261.
  • [15] Yıldırım Ö, Baloglu UB, Acharya UR. A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl.
  • [16] Toraman S, Arslan Tuncer S, Balgetir F. Is it possible to detect cerebral dominance via EEG signals by using deeplearning? Med Hypothesses 2019;131
  • [17] Ullah I, Hussain M, Qazi E-H, Aboalsamh H. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst Appl 2018;107 61–71.
  • [18] CHB-mit scalp EEG database, Physionet.org, [Online]. Available:https://www. physionet.org/pn6/chbmit. (2010) (accessed 04 April 2019)
  • [19] Mukhometzianov R, Carrillo J. CapsNet comparative performance evaluation for image classification. arXiv:1805.11195. arXiv.org
  • [20] Beser F, Kizrak MA, Bolat B, Yildirim T. Recognition of sign language using capsule networks. 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018. pp 1–4
  • [21] Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. Advances in Neural Information Processing Systems
  • [22] Song Y, Zhang J. Discriminating preictal and interictal brain states in intracranial EEG by sample entropy and extreme learning machine. J Neurosci Methods 2016;257 45–54.
  • [23] Lin L-C, Chen SC-J, Chiang C-T, Wu H-C, Yang R-C, Ouyang C-S. Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features. Clin EEG Neurosci 2017;48 (2):139–145.
  • [24] Bou Assi E, Gagliano L, Rihana S, Nguyen DK, Sawan M. Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction. Sci Rep 2018;8 (1):15491.
  • [25] Zhou M, Tian C, Cao R, Wang B, Niu Y, Hu T, Guo H, Xiang J. Epileptic Seizure Detection Based on EEG Signals and CNN. Front Neuroinform 2018;12
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Suat Toraman 0000-0002-7568-4131

Yayımlanma Tarihi 3 Mart 2020
Gönderilme Tarihi 20 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 32 Sayı: 1

Kaynak Göster

APA Toraman, S. (2020). Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(1), 203-209. https://doi.org/10.35234/fumbd.661955
AMA Toraman S. Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2020;32(1):203-209. doi:10.35234/fumbd.661955
Chicago Toraman, Suat. “Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32, sy. 1 (Mart 2020): 203-9. https://doi.org/10.35234/fumbd.661955.
EndNote Toraman S (01 Mart 2020) Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32 1 203–209.
IEEE S. Toraman, “Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 1, ss. 203–209, 2020, doi: 10.35234/fumbd.661955.
ISNAD Toraman, Suat. “Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32/1 (Mart 2020), 203-209. https://doi.org/10.35234/fumbd.661955.
JAMA Toraman S. Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32:203–209.
MLA Toraman, Suat. “Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 32, sy. 1, 2020, ss. 203-9, doi:10.35234/fumbd.661955.
Vancouver Toraman S. Kapsül Ağları Kullanılarak EEG Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32(1):203-9.