Araştırma Makalesi
BibTex RIS Kaynak Göster

Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi

Yıl 2022, Cilt: 34 Sayı: 1, 473 - 484, 20.03.2022
https://doi.org/10.35234/fumbd.1031302

Öz

Uç Öğrenme Makinesi (UÖM), regresyon ve sınıflandırma problemleri için yeni bir alandır. Bu çalışmada diyabet teşhisi için Genetik Algoritma-Dalgacık Çekirdek Fonksiyonu-Uç Öğrenme Makinesi (GA-DFÇ-UÖM) yöntemi kullanılmıştır. GA, UÖM' nin gizli nöron sayısını (GNS) ve Dalgacık Çekirdek Fonksiyonu (DÇF)' nin q, t, j parametre değerlerini optimize etmek için kullanılır. Ayrıca DFÇ-UÖM' nin sınıflandırma performansını artırmak için Genetik Algoritma (GA) kullanılmaktadır. Diyabet Veri Seti (DVS) toplam 768 vaka içermektedir. Bu deneysel çalışmada kullanılan veri seti, UCI veri setinden alınan gerçek diyabet verilerinden oluşmaktadır. Veri seti, DFÇ-UÖM' nin eğitimi ve testi için kullanılır. Sağlıklı ve diyabetik hasta bilgilerinin özellik vektörü, DFÇ-UÖM sınıflandırıcısına girdi olarak sağlanır. Önerilen GA-DFÇ-UÖM yönteminin en başarılı sınıflandırma doğruluğu %98,3 olarak bulunmuştur. Bu başarıya dayalı olarak dalgacık çekirdek fonksiyonunun (DFÇ) q, t, j parametrelerinin değerleri 8, 9 ve 7 olarak bulunmuş ve GNS 140 olmuştur.

Kaynakça

  • [1] American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes care, 37(Supplement 1), S81-S90.
  • [2] American Diabetes Association. (2014). Standards of medical care in diabetes—2014. Diabetes care, 37(Supplement 1), S14-S80.
  • [3] Johnson, R. J., Nakagawa, T., Sanchez-Lozada, L. G., Shafiu, M., Sundaram, S., Le, M., ... & Lanaspa, M. A. (2013). Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 62(10), 3307-3315.
  • [4] K. Polat, S. Gunes and A. Arslan, (2008). A cascade learning system for classication of diabetes disease: Generalized Discriminant Analysis and Least Square Support Vector Machine, Expert Systems with Applications 34, p.p.482–487.
  • [5] K., Kayaer, & T. Yıldırım, (2003). Medical diagnosis on pima indian diabetes using general regression neural networks, artificial neural networks and neural information processing (ICANN/ICONIP) (pp. 181–184), Istanbul, Turkey, June 26–29.
  • [6] K.P. Bennett, J. Blue, A Support Vector Machine Approach to Decision Trees, R.P.I Math Report No. 97-100, Rensselaer Polytechnic Institute, Troy, NY, 1997.
  • [7] Friedman N, Geiger D, Goldszmit M (1997). Bayesian networks classifiers. Machine Learning 29: p.p.131-163. [8] Avci, D. (2016). An Automatic Diagnosis System for Hepatitis Diseases Based on Genetic Wavelet Kernel Extreme Learning Machine. Journal of Electrical Engineering & Technology, 11(4), 993-1002.
  • [9] G. B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme Learning Machine: Theory and Applications”, Neurocomputing, vol. 70, pp. 489-501, 2006.
  • [10] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A Fast and Accurate On-line Sequential Learning Algorithm for Feedforward Networks”, IEEE Transactions on Neural Networks, 17 (2006) 1411-1423.
  • [11] Al-Shayea, Qeethara Kadhim. "Artificial neural networks in medical diagnosis", International Journal of Computer Science Issues 8.2 (2011): 150-154.
  • [12] Whitley, D. (2014). An executable model of a simple genetic algorithm. Foundations of genetic algorithms, 2(1519), 45-62.
  • [13] Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., ... & Morris, Q. (2015). The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), 1254806.
  • [14] Goldberg, D. E. (2006). Genetic algorithms. Pearson Education India.
  • [15] Bin Li, Xuewen Rong and Yibin Li, “An Improved Kernel Based Extreme Learning Machine for Robot Execution Failures”, Hindawi Publishing Corporation The Scientific World Journal, Volume 2014, Article ID 906546, pp. 7, http://dx.doi.org/10.1155/2014/906546.
  • [16] Peng Guan, De-Sheng Huang, Bao-Sen Zhou, Forecasting model for the incidence of hepatitis A based on artificial neural network, China World Journal of Gastroenterol; 10(24), 2004, pp. 3579-3582.
  • [17] Polat K., Gunes S., Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation, Digital Signal Processing 16 (2006), pp. 889–901.
  • [18] J. Beyer, J. Schrezenmeir, G. Schulz, T. Strack, E. Küstner, G. Schulz, The influence of different generations of computer algorithms on diabetes control, Computer Methods and Programs in Biomedicine, Vol. 32, Issues 3-4, July-August 1990, Pages 225-232.
  • [19] http://www.phys.uni.torun.pl/kmk/projects/datasets.html ((last accessed: April 18, 2011).
  • [20] Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Müller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC bioinformatics, 12(1), 77.
  • [21] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
  • [22] Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83-98.
  • [23] Matlab 7.7.0, MATLAB Company, 2011.
  • [24] Ertam, F., & Avcı, E. (2017). A new approach for internet traffic classification: GA-DÇF-UÖM. Measurement, 95, 135-142.
  • [25] Ding, S., Zhang, J., Xu, X., & Zhang, Y. (2016). A wavelet extreme learning machine. Neural Computing and Applications, 27(4), 1033-1040.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm MBD
Yazarlar

Akif Doğantekin 0000-0001-6078-540X

Cafer Bal 0000-0002-1199-2637

Yayımlanma Tarihi 20 Mart 2022
Gönderilme Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 34 Sayı: 1

Kaynak Göster

APA Doğantekin, A., & Bal, C. (2022). Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 473-484. https://doi.org/10.35234/fumbd.1031302
AMA Doğantekin A, Bal C. Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2022;34(1):473-484. doi:10.35234/fumbd.1031302
Chicago Doğantekin, Akif, ve Cafer Bal. “Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34, sy. 1 (Mart 2022): 473-84. https://doi.org/10.35234/fumbd.1031302.
EndNote Doğantekin A, Bal C (01 Mart 2022) Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34 1 473–484.
IEEE A. Doğantekin ve C. Bal, “Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 1, ss. 473–484, 2022, doi: 10.35234/fumbd.1031302.
ISNAD Doğantekin, Akif - Bal, Cafer. “Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34/1 (Mart 2022), 473-484. https://doi.org/10.35234/fumbd.1031302.
JAMA Doğantekin A, Bal C. Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34:473–484.
MLA Doğantekin, Akif ve Cafer Bal. “Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 34, sy. 1, 2022, ss. 473-84, doi:10.35234/fumbd.1031302.
Vancouver Doğantekin A, Bal C. Diyabet Hastalıkları İçin GA-DÇF-UÖM Tabanlı Uzman Tanı Sistemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34(1):473-84.