Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of Enzymatic Hydrolysis of Sucrose

Yıl 2024, Cilt: 36 Sayı: 1, 231 - 243, 28.03.2024
https://doi.org/10.35234/fumbd.1365233

Öz

Although starch-derived glucose syrups have a wide share in industrial applications, health-related discussions mainly highlight the use of sucrose by consumers. Sucrose can be hydrolyzed by acidification or enzymatic methods to form glucose and fructose monomers, called invert sugars. Among these methods, enzymatic hydrolysis process is a preferred method in the industry because it occurs at lower temperatures and produces less toxic waste compared to traditional chemical processes. However, the enzymes used in the hydrolysis process are generally molecules that are difficult to reuse and have low stability, and their high production costs make it difficult to apply them on an industrial scale. The aim of this study was to determine in detail the effect of the independent variables that are important in the hydrolysis of sucrose by the invertase enzyme on sucrose conversion rate, hydrolysis efficiency, and total reducing sugar concentration using the Central Composite Design (CCD) experimental design method. A model equation including enzyme activity was established between the independent variables and response variables examined in the experiments performed with MKD. Within the examined ranges of the independent variables, as a result of the optimization process for the conditions where both the reducing sugar concentration and the conversion of the mathematical model expression are maximum; sucrose concentration was determined as 190.16 g/L, enzyme activity as 55.36 U/mL, temperature as 33.46 oC, reaction time as 131.10 min, and mixing speed as 120.86 rpm. As a result, efficient processing conditions for the enzymatic hydrolysis of sucrose were determined.

Proje Numarası

122M865

Kaynakça

  • Rippe JM. Fructose, high fructose corn syrup, sucrose, and health: modern scientific understandings (pp. 3-12). New York: Springer, 2014.
  • Bolotova K. Sucrose and corn fiber hydrolysis using a succinic acid catalyst, 2005.
  • Yamabe S, Guan W, and Sakaki S. Three competitive transition states at the glycosidic bond of sucrose in its acid-catalyzed hydrolysis. The Journal of Organic Chemistry, 2013; 78(6), 2527-2533.
  • Dos Santos RP, Martins J, Gadelha C, Cavada B, Albertini AV, Arruda F, ... and Freire V. Coal fly ash ceramics: preparation, characterization, and use in the hydrolysis of sucrose. The Scientific World Journal, 2014.
  • Akdağ B. Investigation of thermostable recombinant glucose isomerase production by sucrose utilizing Escherichia coli. Master's thesis, M. Sc. Thesis, Middle East Technical University, Turkey, 2013.
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 2 (22.95 ¢/lb)". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 8 (41.0 ¢/lb) ". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 9 (HFCS-42: 35.92 ¢/lb; HFCS-55: 42.53 ¢/lb)". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Howard JM. Catalytic conversion of sugar manufacturing by-products to 5-(chloromethyl) furfural and 5-(hydroxymethyl) furural, Doctoral dissertation, Queensland University of Technology, 2017.
  • Alves L, and Paixão SM. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process. New biotechnology, 2014; 31(1), 73-79.
  • Solís-Fuentes JA, Guzmán-Flores LF, and Durán-de-Bazúa MC. Kinetic behavior of invertase in the hydrolysis of sucrose in complex sugarcane juice. International Sugar Journal 2013; 115(1375), 488-494.
  • Shankar T, Thangamathi P, Rama R, and Sivakumar T. Characterization of invertase from Saccharomyces cerevisiae MK obtained from toddy sample. J Bioprocessing and Chemical Engineering 2014; 1(2), 1-6.
  • Essel KK, and Osei YD. Investigation of some kinetic properties of commercial invertase from yeast 2014.
  • Kulshrestha S, Tyagi P, Sindhi V, and Yadavilli KS. Invertase and its applications–a brief review. Journal of Pharmacy Research 2013; 7(9), 792-797.
  • Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, ... and Riaz M. Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochemistry 2015; 50(8), 1202-1210.
  • İşgören A, and Sungur S. Tatlandırıcılar. Lectio Scientific 2019; 3(1), 19-33.
  • Monsan P, and Combes D. Application of immobilized invertase to continuous hydrolysis of concentrated sucrose solutions. Biotechnology and bioengineering 1984; 26(4), 347-351.
  • Asadi M. Beet-sugar handbook. John Wiley & Sons, 2006.
  • Yucekan I, and Önal S. Physicochemical properties of invertase partitioned in an aqueous two-phase system of poly (ethylene glycol)/sodium sulfate, 2012.
  • Diamond G, Hagemeyer A, Murphy V, and Sokolovskii V. Catalytic conversion of biorenewable sugar feedstocks into market chemicals. Combinatorial Chemistry & High Throughput Screening 2018; 21(9), 616-630.
  • Eblagon KM, Pereira MFR, and Figueiredo JL. One-pot oxidation of cellobiose to gluconic acid. Unprecedented high selectivity on bifunctional gold catalysts over mesoporous carbon by integrated texture and surface chemistry optimization. Applied Catalysis B: Environmental 2016; 184, 381-396.
  • Ramachandran S, Fontanille P, Pandey A, and Larroche C. Gluconic acid: properties, applications and microbial production. Food Technology & Biotechnology 2006; 44(2).
  • Canete-Rodriguez AM, Santos-Duenas IM, Jimenez-Hornero JE, Ehrenreich A, Liebl W, and Garcia-Garcia I. Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process biochemistry 2016; 51(12), 1891-1903.
  • Vitolo M. Invertase. In S. Said and R.C.L.R. Pietro, (Eds.), Enzymes as Biotechnological Agents (pp. 207–221). Legis Summa, Ribeirao Preto. Sao Paulo, Brazil, 2004.
  • Kotwal SM, and Shankar V. Immobilized invertase. Biotechnology advances 2009; 27(4), 311-322.
  • De Souza Soares A, Augusto PED, Júnior BRDCL, Nogueira CA, Vieira ÉNR, de Barros FAR, ... and Ramos AM. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. Lwt 2019; 107, 164-170.
  • Guimarães LHS, Terenzi HF, de Moraes MDLT, and Jorge JA. Production and characterization of a thermostable extracellular β-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources. Enzyme and Microbial Technology, 2007; 42(1), 52-57.
  • Gómez-Brizuela L, Luis-Orozco J, Ramírez-Pérez HL, Yll-Lavín M, Díaz-Suarez S, Michelena-Álvarez G, and Dustet-Mendoza JC. Comparison of economic indicators of the sucrose acid inversion or by enzymatic hydrolysis. Biotecnología Aplicada 2017; 34(4), 4401-4404.
  • Rebroš M, Rosenberg M, Mlichová Z, and Krištofíková L. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry 2007; 102(3), 784-787.
  • Keramat A, Kargari A, Sohrabi M, and Mirshekar H. Experimental investigation and determination of an optimum condition for sucrose hydrolysis by invertase, 2014.
  • Gopalakrishnan D, Jain A. A statistical and downstream approach for the improvement of protease production from Bacıllus toyonensıs Vkb5 ısolated from Actınıdıa delıcıosa. J Microbiol Biotechnol Food Sci 2021.
  • Enzymatic Assay of INVERTASE (EC 3.2.1.26) https://www.creative-enzymes.com/resource/enzymatic-assay-protocols_17.html (Son erişim tarihi: 10 Nisan 2023).
  • Alegre ACP, Polizeli MDLTDM, Terenzi, HF, Jorge JA, Guimarães LHS. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Brazilian Journal of Microbiology 2009; 40, 612-622.
  • Osiebe O, Adewale IO, Omafuvbe BO. Production and characterization of intracellular invertase from Saccharomyces cerevisiae (OL629078. 1), using cassava-soybean as a cost-effective substrate. Scientific Reports 2023; 13(1), 16295.
  • Addezio FD, Yoriyaz EJ, Cantarella M, and Vitolo M. Sucrose hydrolysis by invertase using a membrane reactor: effect of membrane cut-off on enzyme performance. Brazilian Journal of Pharmaceutical Sciences 2014; 50(2), 257-259.
  • Dorleku WP, Bayitse R, Hansen ACH, Saalia FK, and Bjerre AB. Response surface optimisation of enzymatic hydrolysis of cassava peels without chemical and hydrothermal pretreatment. Biomass Conversion and Biorefinery 2022; 1-14.
  • Guan X, and Yao H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food chemistry 2008; 106(1), 345-351.
  • Hamza SM. Impact of credit risk management on banks performance: A case study in Pakistan banks. European Journal of Business and Management 2017; 9(1), 57-64.
  • Guillemette M, Finke MS, and Gilliam J. Risk tolerance questions to best determine client portfolio allocation preferences. Journal of Financial Planning 2012; 25(5), 36-44.
  • Batista RD, Melo FG, do Amaral Santos CCA, de Paula-Elias FC, Perna RF, Xavier MCA, ... de Almeida AF. Optimization of β-fructofuranosidase production from agrowaste by Aspergillus carbonarius and its application in the production of inverted sugar. Food Technology and Biotechnology 2021; 59(3), 306-313.
  • Doğan NK, Kalender M. Şeker Pancarı Melasından Escherichia coli KO11 Suşu ile Biyoetanol Üretimi: Enzimatik Hidroliz ve Kesikli Fermantasyon. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2023; 35(1), 15-23.

Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu

Yıl 2024, Cilt: 36 Sayı: 1, 231 - 243, 28.03.2024
https://doi.org/10.35234/fumbd.1365233

Öz

Nişasta kaynaklı glukoz şurupları endüstriyel uygulamalarda geniş bir paya sahip olmasına rağmen temelde sağlıkla ilgili tartışmalar tüketicilerde sakkarozun kullanımını öne çıkarmaktadır. Sakkaroz, asitleştirme veya enzimatik yöntemlerle invert şekerler adı verilen glukoz ve fruktoz monomerlerine hidroliz edilebilirler. Bu yöntemlerden enzimatik hidroliz işlemi geleneksel kimyasal proseslere göre daha düşük sıcaklıklarda gerçekleşmesi ve daha az toksik atık üretmesinden dolayı endüstride tercih edilen bir yöntemdir. Bununla birlikte, hidroliz işleminde kullanılan enzimler genellikle yeniden kullanımı zor ve stabilitesi düşük moleküller olup, üretim maliyetlerinin yüksek olması endüstriyel ölçekte uygulanmasını zorlaştırmaktadır. Bu çalışmanın amacı sakkarozun invertaz enzimi yardımıyla hidrolizinde önemli olan bağımsız değişkenlerin sakkaroz dönüşüm oranı, hidrolizi verimi ve toplam indirgen şeker konsantrasyonu üzerine etkisinin Merkez Kompozit Dizayn (MKD) deneysel tasarım yöntemi kullanılarak detaylı olarak belirlenmesidir. MKD ile gerçekleştirilen deneylerde incelenen bağımsız değişkenler ve cevap değişkenleri arasında enzim aktivitesini de içeren model bir denklem oluşturulmuştur. Bağımsız değişkenlerin incelenen aralıkları içerisinde, matematiksel model ifadenin hem indirgen şeker konsantrasyonu hem de dönüşümün maksimum olduğu şartlar için yapılan optimizasyon işlemi sonucunda; sakkaroz konsantrasyonu 190,16 g/L, enzim aktivitesi 55,36 U/mL, sıcaklık 33,46 oC, reaksiyon süresi 131,10 dk ve karıştırma hızı 120,86 rpm olarak belirlenmiştir. Sonuç olarak, sakkarozun enzimatik hidrolizi için verimli çalışma koşulları belirlenmiştir.

Etik Beyan

Etik içerikli bir çalışma bulunmamaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

122M865

Teşekkür

Yazarlar, bu çalışmaya 122M865 proje numarası ile 1002-Hızlı Destek-A projesi kapsamında maddi desteğinden dolayı Türkiye Bilimsel ve Teknolojik Araştırma Kurumuna (TÜBİTAK) teşekkür ederler.

Kaynakça

  • Rippe JM. Fructose, high fructose corn syrup, sucrose, and health: modern scientific understandings (pp. 3-12). New York: Springer, 2014.
  • Bolotova K. Sucrose and corn fiber hydrolysis using a succinic acid catalyst, 2005.
  • Yamabe S, Guan W, and Sakaki S. Three competitive transition states at the glycosidic bond of sucrose in its acid-catalyzed hydrolysis. The Journal of Organic Chemistry, 2013; 78(6), 2527-2533.
  • Dos Santos RP, Martins J, Gadelha C, Cavada B, Albertini AV, Arruda F, ... and Freire V. Coal fly ash ceramics: preparation, characterization, and use in the hydrolysis of sucrose. The Scientific World Journal, 2014.
  • Akdağ B. Investigation of thermostable recombinant glucose isomerase production by sucrose utilizing Escherichia coli. Master's thesis, M. Sc. Thesis, Middle East Technical University, Turkey, 2013.
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 2 (22.95 ¢/lb)". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 8 (41.0 ¢/lb) ". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Amerika Birleşik Devletleri Tarım Bakanlığı (USDA). "Şeker ve Tatlandırıcılar Yıllığı Tabloları: Tablo 9 (HFCS-42: 35.92 ¢/lb; HFCS-55: 42.53 ¢/lb)". https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables/ (Son erişim Tarihi: 15 Temmuz 2022).
  • Howard JM. Catalytic conversion of sugar manufacturing by-products to 5-(chloromethyl) furfural and 5-(hydroxymethyl) furural, Doctoral dissertation, Queensland University of Technology, 2017.
  • Alves L, and Paixão SM. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process. New biotechnology, 2014; 31(1), 73-79.
  • Solís-Fuentes JA, Guzmán-Flores LF, and Durán-de-Bazúa MC. Kinetic behavior of invertase in the hydrolysis of sucrose in complex sugarcane juice. International Sugar Journal 2013; 115(1375), 488-494.
  • Shankar T, Thangamathi P, Rama R, and Sivakumar T. Characterization of invertase from Saccharomyces cerevisiae MK obtained from toddy sample. J Bioprocessing and Chemical Engineering 2014; 1(2), 1-6.
  • Essel KK, and Osei YD. Investigation of some kinetic properties of commercial invertase from yeast 2014.
  • Kulshrestha S, Tyagi P, Sindhi V, and Yadavilli KS. Invertase and its applications–a brief review. Journal of Pharmacy Research 2013; 7(9), 792-797.
  • Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, ... and Riaz M. Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochemistry 2015; 50(8), 1202-1210.
  • İşgören A, and Sungur S. Tatlandırıcılar. Lectio Scientific 2019; 3(1), 19-33.
  • Monsan P, and Combes D. Application of immobilized invertase to continuous hydrolysis of concentrated sucrose solutions. Biotechnology and bioengineering 1984; 26(4), 347-351.
  • Asadi M. Beet-sugar handbook. John Wiley & Sons, 2006.
  • Yucekan I, and Önal S. Physicochemical properties of invertase partitioned in an aqueous two-phase system of poly (ethylene glycol)/sodium sulfate, 2012.
  • Diamond G, Hagemeyer A, Murphy V, and Sokolovskii V. Catalytic conversion of biorenewable sugar feedstocks into market chemicals. Combinatorial Chemistry & High Throughput Screening 2018; 21(9), 616-630.
  • Eblagon KM, Pereira MFR, and Figueiredo JL. One-pot oxidation of cellobiose to gluconic acid. Unprecedented high selectivity on bifunctional gold catalysts over mesoporous carbon by integrated texture and surface chemistry optimization. Applied Catalysis B: Environmental 2016; 184, 381-396.
  • Ramachandran S, Fontanille P, Pandey A, and Larroche C. Gluconic acid: properties, applications and microbial production. Food Technology & Biotechnology 2006; 44(2).
  • Canete-Rodriguez AM, Santos-Duenas IM, Jimenez-Hornero JE, Ehrenreich A, Liebl W, and Garcia-Garcia I. Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process biochemistry 2016; 51(12), 1891-1903.
  • Vitolo M. Invertase. In S. Said and R.C.L.R. Pietro, (Eds.), Enzymes as Biotechnological Agents (pp. 207–221). Legis Summa, Ribeirao Preto. Sao Paulo, Brazil, 2004.
  • Kotwal SM, and Shankar V. Immobilized invertase. Biotechnology advances 2009; 27(4), 311-322.
  • De Souza Soares A, Augusto PED, Júnior BRDCL, Nogueira CA, Vieira ÉNR, de Barros FAR, ... and Ramos AM. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. Lwt 2019; 107, 164-170.
  • Guimarães LHS, Terenzi HF, de Moraes MDLT, and Jorge JA. Production and characterization of a thermostable extracellular β-D-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources. Enzyme and Microbial Technology, 2007; 42(1), 52-57.
  • Gómez-Brizuela L, Luis-Orozco J, Ramírez-Pérez HL, Yll-Lavín M, Díaz-Suarez S, Michelena-Álvarez G, and Dustet-Mendoza JC. Comparison of economic indicators of the sucrose acid inversion or by enzymatic hydrolysis. Biotecnología Aplicada 2017; 34(4), 4401-4404.
  • Rebroš M, Rosenberg M, Mlichová Z, and Krištofíková L. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry 2007; 102(3), 784-787.
  • Keramat A, Kargari A, Sohrabi M, and Mirshekar H. Experimental investigation and determination of an optimum condition for sucrose hydrolysis by invertase, 2014.
  • Gopalakrishnan D, Jain A. A statistical and downstream approach for the improvement of protease production from Bacıllus toyonensıs Vkb5 ısolated from Actınıdıa delıcıosa. J Microbiol Biotechnol Food Sci 2021.
  • Enzymatic Assay of INVERTASE (EC 3.2.1.26) https://www.creative-enzymes.com/resource/enzymatic-assay-protocols_17.html (Son erişim tarihi: 10 Nisan 2023).
  • Alegre ACP, Polizeli MDLTDM, Terenzi, HF, Jorge JA, Guimarães LHS. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Brazilian Journal of Microbiology 2009; 40, 612-622.
  • Osiebe O, Adewale IO, Omafuvbe BO. Production and characterization of intracellular invertase from Saccharomyces cerevisiae (OL629078. 1), using cassava-soybean as a cost-effective substrate. Scientific Reports 2023; 13(1), 16295.
  • Addezio FD, Yoriyaz EJ, Cantarella M, and Vitolo M. Sucrose hydrolysis by invertase using a membrane reactor: effect of membrane cut-off on enzyme performance. Brazilian Journal of Pharmaceutical Sciences 2014; 50(2), 257-259.
  • Dorleku WP, Bayitse R, Hansen ACH, Saalia FK, and Bjerre AB. Response surface optimisation of enzymatic hydrolysis of cassava peels without chemical and hydrothermal pretreatment. Biomass Conversion and Biorefinery 2022; 1-14.
  • Guan X, and Yao H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food chemistry 2008; 106(1), 345-351.
  • Hamza SM. Impact of credit risk management on banks performance: A case study in Pakistan banks. European Journal of Business and Management 2017; 9(1), 57-64.
  • Guillemette M, Finke MS, and Gilliam J. Risk tolerance questions to best determine client portfolio allocation preferences. Journal of Financial Planning 2012; 25(5), 36-44.
  • Batista RD, Melo FG, do Amaral Santos CCA, de Paula-Elias FC, Perna RF, Xavier MCA, ... de Almeida AF. Optimization of β-fructofuranosidase production from agrowaste by Aspergillus carbonarius and its application in the production of inverted sugar. Food Technology and Biotechnology 2021; 59(3), 306-313.
  • Doğan NK, Kalender M. Şeker Pancarı Melasından Escherichia coli KO11 Suşu ile Biyoetanol Üretimi: Enzimatik Hidroliz ve Kesikli Fermantasyon. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2023; 35(1), 15-23.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomedikal Mühendisliği (Diğer)
Bölüm MBD
Yazarlar

Abdulkadir Gül 0000-0003-4879-6194

Muhammet Şaban Tanyıldızı 0000-0001-6456-1593

Proje Numarası 122M865
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 23 Eylül 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Gül, A., & Tanyıldızı, M. Ş. (2024). Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 231-243. https://doi.org/10.35234/fumbd.1365233
AMA Gül A, Tanyıldızı MŞ. Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2024;36(1):231-243. doi:10.35234/fumbd.1365233
Chicago Gül, Abdulkadir, ve Muhammet Şaban Tanyıldızı. “Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 1 (Mart 2024): 231-43. https://doi.org/10.35234/fumbd.1365233.
EndNote Gül A, Tanyıldızı MŞ (01 Mart 2024) Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 231–243.
IEEE A. Gül ve M. Ş. Tanyıldızı, “Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, ss. 231–243, 2024, doi: 10.35234/fumbd.1365233.
ISNAD Gül, Abdulkadir - Tanyıldızı, Muhammet Şaban. “Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (Mart 2024), 231-243. https://doi.org/10.35234/fumbd.1365233.
JAMA Gül A, Tanyıldızı MŞ. Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:231–243.
MLA Gül, Abdulkadir ve Muhammet Şaban Tanyıldızı. “Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, 2024, ss. 231-43, doi:10.35234/fumbd.1365233.
Vancouver Gül A, Tanyıldızı MŞ. Sakkarozun Enzimatik Olarak Hidrolizinin Optimizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):231-43.