Araştırma Makalesi
BibTex RIS Kaynak Göster

KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü

Yıl 2024, Cilt: 36 Sayı: 2, 923 - 933, 30.09.2024
https://doi.org/10.35234/fumbd.1522324

Öz

Rüzgâr enerji sistemlerinde, değişken rüzgâr hızından maksimum bir şekilde faydalanarak sistem veriminin arttırılması önemli konulardan biri haline gelmiştir. Bu çalışmada değişken rüzgâr hızları altında hız sensörü ve herhangi bir motor kontrol algoritması kullanmayan tek fazlı şebeke bağlantılı Maksimum Güç Noktası Takibi (MGNT) sistemi önerilmiştir. Önerilen sistemde generatör olarak Kalıcı Mıknatıslı Senkron Generatör (KMSG) tercih edilmiş ve çıkışında diyotlu doğrultucu devre kullanılmıştır. Değişken hızlarda şebeke bağlantısını sağlayabilmek için gerekli DA bara gerilimini yakalamak amacıyla DA-DA yükseltici devreye yer verilmiştir. Sistemde herhangi bir motor kontrol tekniğinin kullanılmaması ve PI (Proportional-Integral) ile PR (Proportional-Resonant) kontrolcüleriyle denetimlerin sağlanmasıyla sistem basit yapılı bir hale getirilmiştir. Ayrıca KMSG çıkışında kontrollü doğrultucu yerine diyotlu doğrultucu kullanılmasıyla sistem maliyeti ve boyutu nispeten azaltılmıştır. Yapılan benzetim çalışmalarında önerilen 2kW nominal güce ve 400V bara gerilime sahip MGNT sistemi test edilmiştir. Sonuçlar sistemin performansını ve doğruluğunu göstermektedir.

Kaynakça

  • Afridi SK, Koondhar MA, Jamali MI, Alaas ZM, Alsharif MH, Kim MK, Mahariq I, Touti E ve diğerleri. Winds of Progress: An In-depth Exploration of Offshore, Floating, and Onshore Wind Turbines as Cornerstones for Sustainable Energy Generation and Environmental Stewardship. IEEE Access 2024; 12: 66147–66166.
  • Chen P, Thiringer T. Analysis of energy curtailment and capacity over installation to maximize wind turbine profit considering electricity price–wind correlation. IEEE Trans on Sustainable Energy 2017; 8(4): 1406-1414.
  • Geng Y, Li C, Cao Y, Chen H, Kuang Y, Ren X, Bai X. Cost analysis of air capture driven by wind energy under different scenarios. J Mod Power Syst Clean Energy 2016; 4(2): 275-281.
  • Yaramasu V, Wu B, Sen PC, Kouro S, Narimani M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proceedings of the IEEE 2015; 103(5): 740-788.
  • Ouyang J, Li M, Zhang Z, Tang T. Multi-timescale active and reactive power-coordinated control of large-scale wind integrated power system for severe wind speed fluctuation. IEEE Access 2019; 7: 51201-51210.
  • Dursun EH, Koyuncu H, Kulaksiz AA. A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives. Eng Sci Technol Int J 2021; 24(1): 158-70.
  • Mishra J, Pattnaik M, Samanta S. Drift-free perturb and observe MPPT algorithm with improved performance for SEIG-based stand-alone wind energy generation system. IEEE Trans. Power Electron 2019; 35(6): 5842-5849.
  • Chen W, Yang W, Qi H, Shi Z, Geng H. Coordinated power reserve control of wind farm for frequency regulation. IEEE Access 2023; 11: 55465-55473.
  • Wang X, Yang R, Shi Z, Cai X, Shi X, Chen Y. Coordinated low voltage ride-through of MMC-HVDC transmission system and wind farm with distributed braking resistors. IEEE Access 2022; 10: 87860-87869.
  • Ruiz C, Abad G, Zubiaga M, Madariaga D, Arza J. Wind turbine oriented solutions to improve power quality and harmonic compliance of ac offshore wind power plants. IEEE Access 2021; 9: 167096-167116.
  • Shutari H, Ibrahim T, Nor NB, Saad N, Tajuddin MF, Abdulrab HQ. Development of a novel efficient maximum power extraction technique for grid-tied VSWT system. IEEE Access 2022; 10: 101922-101935.
  • Chen W, Yang W, Chen Q, Li J, Geng H. Wind Speed Estimation for PMSG-Based WECS under Power Limit Control. IEEE 6th International Electrical and Energy Conference (CIEEC); 12 May 2023; Hefei, China. pp. 1288-1292.
  • Du C, Du X, Tong C, Li Y, Zhou P. Stability analysis for DFIG-based wind farm grid-connected system under all wind speed conditions. IEEE Trans Ind Appl 2022; 59(2): 2430-2445.
  • Puchalapalli S, Singh B, Das S. Grid-interactive smooth transition control of wind-solar-dg based microgrid at unpredictable weather conditions. IEEE Trans Ind Appl 2024; 60(1): 1519-1529.
  • Chojaa H, Derouich A, Zamzoum O, Mahfoud S, Taoussi M, Albalawi H, Benbouhenni H, Mosaad MI. A novel DPC approach for DFIG-based variable speed wind power systems using DSpace. IEEE Access 2023; 11: 9493-9510.
  • Shanmugam L, Palanimuthu K, Joo YH. Decentralized sampled-data control for stochastic disturbance in interconnected power systems with PMSG-based wind turbines. IEEE Trans Cybern 2023; 54(6): 3516-3525.
  • Aldin NA, Abdellatif WS, Elbarbary ZS, Omar AI, Mahmoud MM. Robust speed controller for PMSG wind system based on Harris Hawks optimization via wind speed estimation: a real case study. IEEE Access 2023; 11: 5929-5943.
  • Qin Y, Wang X, Wang H, Cai X, Lin B, Xu H. Effect of submarine cable capacitance on dynamic aggregation modeling of SCIG-based wind farm. IEEE 4th International Conference on HVDC (HVDC); 6 Nov 2020; Xi'an, China. pp. 651-656.
  • Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers Manage 2014; 88: 332-437.
  • Sun B, Chen Z, Gao C, Haddad A, Liang J, Liu X. A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG. IEEE Trans Ind Electron 2021; 69(8): 8091-8101.
  • Govinda CV, Udhay SV, Rani C, Wang Y, Busawon K. A review on various MPPT techniques for wind energy conversion system. International conference on computation of power, energy, information and communication (ICCPEIC); 28 Mar 2018; Chennai, India. pp. 310-326.
  • Sandeep V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. International Conference on Energy Efficient Technologies for Sustainability (ICEETS); 7 Apr 2016; Nagercoil, India. pp. 917-921.
  • Chojaa H, Derouich A, Chehaidia SE, Zamzoum O, Taoussi M, Elouatouat H. Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep 2021; 7: 4809-4824.
  • Putri AI, Ahn M, Choi J. Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation. International Conference on Renewable Energy Research and Applications (ICRERA); 11 Nov 2012;Nagasaki, Japan. pp 1-6.
  • Chen J, Yao W, Zhang CK, Ren Y, Jiang L. Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control. Renewable Energy 2019; 134: 478-95.
  • Tiwari R, Kumar K, Babu NR, Prabhu KR. Coordinated mppt and dpc strategies for pmsg based grid connected wind energy conversion system. Energy Procedia 2018; 145: 339-44.
  • Toumi I, Boulmaiz A, Meghni B, Hachana O. Robust variable step P&O algorithm based MPPT for PMSG wind generation system using estimated wind speed compensation technique. Sustainable Energy Technol Assess 2023; 60: 103420.
  • Penalba M, Sell NP, Hillis AJ, Ringwood JV. Validating a wave-to-wire model for a wave energy converter—Part I: The Hydraulic Transmission System. Energies 2017; 10(7): 977.
  • Oguz CB, Avci E, Ozturk SB. Analysis of PV power plant performance considering combination of different MPPT algorithms, shading patterns and connection types. Eng Sci Technol Int J 2023; 48: 101559.
  • Avci E, Ucar M. Proportional multi‐resonant‐based controller design method enhanced with a lead compensator for stand‐alone mode three‐level three‐phase four‐leg advanced T‐NPC inverter system. IET Power Electron 2020; 13(4): 863-872.
  • Wu W, He Y, Tang T, Blaabjerg F. A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter. IEEE Trans Ind Electron 2012; 60(10): 4339-50.

Sensorless MPPT Control of Grid-Connected Wind Energy System Based on PMSG

Yıl 2024, Cilt: 36 Sayı: 2, 923 - 933, 30.09.2024
https://doi.org/10.35234/fumbd.1522324

Öz

In wind energy systems, increasing system efficiency by maximizing the usage of wind speed has become an important issue. In this study, a single-phase grid-connected Maximum Power Point Tracking (MPPT) system that does not use a speed sensor or any motor control algorithm under variable wind speeds is proposed. In the proposed system, a Permanent Magnet Synchronous Generator (PMSG) is chosen as the generator, and a diode rectifier circuit is used at its output. To achieve the necessary DC bus voltage for grid connection at variable speeds, a DC-DC boost converter is included. The system is simplified by not using any motor control techniques and by employing PI and PR controllers for regulation. Additionally, the use of a diode rectifier instead of a controlled rectifier at the PMSG output reduces the system's cost and size. The proposed MPPT system, with a nominal power of 2kW and a bus voltage of 400V, was tested in simulation studies. The results demonstrated the system's performance and accuracy.

Kaynakça

  • Afridi SK, Koondhar MA, Jamali MI, Alaas ZM, Alsharif MH, Kim MK, Mahariq I, Touti E ve diğerleri. Winds of Progress: An In-depth Exploration of Offshore, Floating, and Onshore Wind Turbines as Cornerstones for Sustainable Energy Generation and Environmental Stewardship. IEEE Access 2024; 12: 66147–66166.
  • Chen P, Thiringer T. Analysis of energy curtailment and capacity over installation to maximize wind turbine profit considering electricity price–wind correlation. IEEE Trans on Sustainable Energy 2017; 8(4): 1406-1414.
  • Geng Y, Li C, Cao Y, Chen H, Kuang Y, Ren X, Bai X. Cost analysis of air capture driven by wind energy under different scenarios. J Mod Power Syst Clean Energy 2016; 4(2): 275-281.
  • Yaramasu V, Wu B, Sen PC, Kouro S, Narimani M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proceedings of the IEEE 2015; 103(5): 740-788.
  • Ouyang J, Li M, Zhang Z, Tang T. Multi-timescale active and reactive power-coordinated control of large-scale wind integrated power system for severe wind speed fluctuation. IEEE Access 2019; 7: 51201-51210.
  • Dursun EH, Koyuncu H, Kulaksiz AA. A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives. Eng Sci Technol Int J 2021; 24(1): 158-70.
  • Mishra J, Pattnaik M, Samanta S. Drift-free perturb and observe MPPT algorithm with improved performance for SEIG-based stand-alone wind energy generation system. IEEE Trans. Power Electron 2019; 35(6): 5842-5849.
  • Chen W, Yang W, Qi H, Shi Z, Geng H. Coordinated power reserve control of wind farm for frequency regulation. IEEE Access 2023; 11: 55465-55473.
  • Wang X, Yang R, Shi Z, Cai X, Shi X, Chen Y. Coordinated low voltage ride-through of MMC-HVDC transmission system and wind farm with distributed braking resistors. IEEE Access 2022; 10: 87860-87869.
  • Ruiz C, Abad G, Zubiaga M, Madariaga D, Arza J. Wind turbine oriented solutions to improve power quality and harmonic compliance of ac offshore wind power plants. IEEE Access 2021; 9: 167096-167116.
  • Shutari H, Ibrahim T, Nor NB, Saad N, Tajuddin MF, Abdulrab HQ. Development of a novel efficient maximum power extraction technique for grid-tied VSWT system. IEEE Access 2022; 10: 101922-101935.
  • Chen W, Yang W, Chen Q, Li J, Geng H. Wind Speed Estimation for PMSG-Based WECS under Power Limit Control. IEEE 6th International Electrical and Energy Conference (CIEEC); 12 May 2023; Hefei, China. pp. 1288-1292.
  • Du C, Du X, Tong C, Li Y, Zhou P. Stability analysis for DFIG-based wind farm grid-connected system under all wind speed conditions. IEEE Trans Ind Appl 2022; 59(2): 2430-2445.
  • Puchalapalli S, Singh B, Das S. Grid-interactive smooth transition control of wind-solar-dg based microgrid at unpredictable weather conditions. IEEE Trans Ind Appl 2024; 60(1): 1519-1529.
  • Chojaa H, Derouich A, Zamzoum O, Mahfoud S, Taoussi M, Albalawi H, Benbouhenni H, Mosaad MI. A novel DPC approach for DFIG-based variable speed wind power systems using DSpace. IEEE Access 2023; 11: 9493-9510.
  • Shanmugam L, Palanimuthu K, Joo YH. Decentralized sampled-data control for stochastic disturbance in interconnected power systems with PMSG-based wind turbines. IEEE Trans Cybern 2023; 54(6): 3516-3525.
  • Aldin NA, Abdellatif WS, Elbarbary ZS, Omar AI, Mahmoud MM. Robust speed controller for PMSG wind system based on Harris Hawks optimization via wind speed estimation: a real case study. IEEE Access 2023; 11: 5929-5943.
  • Qin Y, Wang X, Wang H, Cai X, Lin B, Xu H. Effect of submarine cable capacitance on dynamic aggregation modeling of SCIG-based wind farm. IEEE 4th International Conference on HVDC (HVDC); 6 Nov 2020; Xi'an, China. pp. 651-656.
  • Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers Manage 2014; 88: 332-437.
  • Sun B, Chen Z, Gao C, Haddad A, Liang J, Liu X. A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG. IEEE Trans Ind Electron 2021; 69(8): 8091-8101.
  • Govinda CV, Udhay SV, Rani C, Wang Y, Busawon K. A review on various MPPT techniques for wind energy conversion system. International conference on computation of power, energy, information and communication (ICCPEIC); 28 Mar 2018; Chennai, India. pp. 310-326.
  • Sandeep V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. International Conference on Energy Efficient Technologies for Sustainability (ICEETS); 7 Apr 2016; Nagercoil, India. pp. 917-921.
  • Chojaa H, Derouich A, Chehaidia SE, Zamzoum O, Taoussi M, Elouatouat H. Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep 2021; 7: 4809-4824.
  • Putri AI, Ahn M, Choi J. Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation. International Conference on Renewable Energy Research and Applications (ICRERA); 11 Nov 2012;Nagasaki, Japan. pp 1-6.
  • Chen J, Yao W, Zhang CK, Ren Y, Jiang L. Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control. Renewable Energy 2019; 134: 478-95.
  • Tiwari R, Kumar K, Babu NR, Prabhu KR. Coordinated mppt and dpc strategies for pmsg based grid connected wind energy conversion system. Energy Procedia 2018; 145: 339-44.
  • Toumi I, Boulmaiz A, Meghni B, Hachana O. Robust variable step P&O algorithm based MPPT for PMSG wind generation system using estimated wind speed compensation technique. Sustainable Energy Technol Assess 2023; 60: 103420.
  • Penalba M, Sell NP, Hillis AJ, Ringwood JV. Validating a wave-to-wire model for a wave energy converter—Part I: The Hydraulic Transmission System. Energies 2017; 10(7): 977.
  • Oguz CB, Avci E, Ozturk SB. Analysis of PV power plant performance considering combination of different MPPT algorithms, shading patterns and connection types. Eng Sci Technol Int J 2023; 48: 101559.
  • Avci E, Ucar M. Proportional multi‐resonant‐based controller design method enhanced with a lead compensator for stand‐alone mode three‐level three‐phase four‐leg advanced T‐NPC inverter system. IET Power Electron 2020; 13(4): 863-872.
  • Wu W, He Y, Tang T, Blaabjerg F. A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter. IEEE Trans Ind Electron 2012; 60(10): 4339-50.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç), Güç Elektroniği
Bölüm MBD
Yazarlar

Emre Avcı 0000-0003-2086-1417

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 24 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 2

Kaynak Göster

APA Avcı, E. (2024). KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2), 923-933. https://doi.org/10.35234/fumbd.1522324
AMA Avcı E. KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Eylül 2024;36(2):923-933. doi:10.35234/fumbd.1522324
Chicago Avcı, Emre. “KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT Ile Kontrolü”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 2 (Eylül 2024): 923-33. https://doi.org/10.35234/fumbd.1522324.
EndNote Avcı E (01 Eylül 2024) KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 2 923–933.
IEEE E. Avcı, “KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, ss. 923–933, 2024, doi: 10.35234/fumbd.1522324.
ISNAD Avcı, Emre. “KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT Ile Kontrolü”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/2 (Eylül 2024), 923-933. https://doi.org/10.35234/fumbd.1522324.
JAMA Avcı E. KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:923–933.
MLA Avcı, Emre. “KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT Ile Kontrolü”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 2, 2024, ss. 923-3, doi:10.35234/fumbd.1522324.
Vancouver Avcı E. KMSG Tabanlı Şebeke Bağlantılı Rüzgâr Enerji Sisteminin Sensörsüz MGNT ile Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(2):923-3.