Araştırma Makalesi
BibTex RIS Kaynak Göster

The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection

Yıl 2025, Cilt: 37 Sayı: 1, 303 - 320, 27.03.2025
https://doi.org/10.35234/fumbd.1556260

Öz

The detection of diabetes is crucial for effective management and prevention of the disease, which poses significant health risks globally. This study introduces a novel approach to diabetes detection by combining advanced data balancing techniques and feature selection methods, including Lasso (L1) regularization, to enhance the performance of predictive models in imbalanced datasets. Techniques such as Random Under Sampling (RUS), Adaptive Synthetic Sampling (ADASYN), and Synthetic Minority Over-sampling Technique (SMOTE) were employed alongside models including Random Forest (RF), CatBoost (CB), Extreme Gradient Boosting (XGB), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), Logistic Regression (LR), and Gradient Boosting (GB) to assess their impact on model accuracy and generalization capabilities. The findings reveal that the RF model achieved the highest accuracy of 93.25% when utilizing the SMOTE technique, underscoring the importance of appropriate data handling strategies in improving predictive outcomes. Furthermore, when all features were utilized without selection, the RF model attained an accuracy of 95.31%, indicating the model’s capacity to capture complex patterns when feature richness is maximized. The comprehensive methodology used in the study achieved a higher accuracy in diabetes detection than research in the literature and provided important outputs for developing reliable prediction models in healthcare.

Kaynakça

  • World Health Organization. Diabetes. Available at: https://www.who.int/en/health-topics/noncommunicable-diseases/diabetes/#tab=tab_1 [Accessed 03 September 2024].
  • Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab 2011; 2(9): 1000167.
  • Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002; 48(3): 436-472.
  • American Diabetes Association. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diabetes 2019; 37(1): 11.
  • Harris MI, Eastman RC. Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev 2000; 16(4): 230-236.
  • Crow H, Gage H, Hampson S, Hart J, Kimber A, Storey L, Thomas H. Measurement of satisfaction with health care: implications for practice from a systematic review of the literature. Health Technol Assess 2002; 6(32): 1-10.
  • Sinap V. A comparative study of loan approval prediction using machine learning methods. Gazi Univ J Sci Part C: Design Technol 2024; 12(2): 644-663.
  • Gong Y, Liu G, Xue Y, Li R, Meng L. A survey on dataset quality in machine learning. Inform Software Technol 2023; 162: 107268.
  • Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey on missing data in machine learning. J Big Data 2021; 8: 1-37.
  • Neelima S, Govindaraj M, Subramani DK, ALkhayyat A, Mohan DC. Factors influencing data utilization and performance of health management information systems: a case study. Indian J Inform Sources Serv 2024; 14(2): 146-152.
  • Thabtah F, Hammoud S, Kamalov F, Gonsalves A. Data imbalance in classification: Experimental evaluation. Inform Sci 2020; 513: 429-441.
  • Shin J, Kim J, Lee C, Yoon JY, Kim S, Song S, Kim HS. Development of various diabetes prediction models using machine learning techniques. Diabetes Metab J 2022; 46(4): 650-657.
  • Mir A, Dhage SN. Diabetes disease prediction using machine learning on big data of healthcare. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA); 16-18 August 2018; Pune, India. New York, NY, USA: IEEE; 2018. pp. 1-6.
  • Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci 2018; 132: 1578-1585.
  • Yahyaoui A, Jamil A, Rasheed J, Yesiltepe M. A decision support system for diabetes prediction using machine learning and deep learning techniques. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK); 6-7 November 2019; Ankara, Turkey. New York, NY, USA: IEEE; 2019. pp. 1-4.
  • Khanam JJ, Foo SY. A comparison of machine learning algorithms for diabetes prediction. ICT Express 2021; 7(4): 432-439.
  • Sivaranjani S, Ananya S, Aravinth J, Karthika R. Diabetes prediction using machine learning algorithms with feature selection and dimensionality reduction. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS); 19-20 March 2021; Coimbatore, India. New York, NY, USA: IEEE; 2021. pp. 141-146.
  • Hasan MK, Alam MA, Das D, Hossain E, Hasan M. Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 2020; 8: 76516-76531.
  • Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. Classification and prediction of diabetes disease using machine learning paradigm. Health Inform Sci Syst 2020; 8: 1-14.
  • Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System: Annual survey data. Available at: https://www.cdc.gov/brfss/annual_data/annual_data.htm [Accessed 07 September 2024].
  • Tanha J, Abdi Y, Samadi N, Razzaghi N, Asadpour M. Boosting methods for multi-class imbalanced data classification: an experimental review. J Big Data 2020; 7: 1-47.
  • Sinap V. Comparative analysis of machine learning techniques for detecting potability of water. J Sci Rep A 2024; 058: 135-161.
  • Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. J Big Data 2020; 7(1): 94.
  • Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug. p. 785-794.
  • Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Mach Learn 2000; 38: 257-286.
  • Ontivero-Ortega M, Lage-Castellanos A, Valente G, Goebel R, Valdes-Sosa M. Fast Gaussian Naïve Bayes for searchlight classification analysis. NeuroImage 2017; 163: 471-479.
  • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35(5-6): 352-359.
  • Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn 2024; 113(7): 4903-4923.
  • Abacı İ, Yıldız K. SMOTE vs. KNNOR: An evaluation of oversampling techniques in machine learning. Gümüşhane University Journal of Science 2023; 13(3): 767-779.
  • Susan S, Kumar A. The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent state of the art. Eng Rep 2021; 3(4): e12298.
  • Mukherjee M, Khushi M. SMOTE-ENC: A novel SMOTE-based method to generate synthetic data for nominal and continuous features. Appl Syst Innov 2021; 4(1): 18.
  • Belete DM, Huchaiah MD. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int J Comput Appl 2022; 44(9): 875-886.
  • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. A review of feature selection methods on synthetic data. Knowl Inf Syst 2013; 34: 483-519.
  • Li Z, Sillanpää MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet 2012; 125: 419-435.
  • Raju VG, Lakshmi KP, Jain VM, Kalidindi A, Padma V. Study the influence of normalization/transformation process on the accuracy of supervised classification. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT); 20-22 August 2020; Tirunelveli, India. New York, NY, USA: IEEE; 2020. pp. 729-735.
  • Rodríguez-Pérez R, Fernández L, Marco S. Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: A systematic study. Anal Bioanal Chem 2018; 410(23): 5981-5992.
  • Dinga R, Penninx BW, Veltman DJ, Schmaal L, Marquand AF. Beyond accuracy: Measures for assessing machine learning models, pitfalls and guidelines. BioRxiv. 2019; 743138.
  • Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Physics in Medicine & Biology. 2018; 63(7): 07TR01.
  • Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 2016; 114: 24-31.
  • Elhassan T, Aljurf M. Classification of imbalance data using Tomek link (T-link) combined with random under-sampling (RUS) as a data reduction method. Glob J Technol Optim 2016; S1:111.
  • Zheng K, Cai S, Chua HR, Wang W, Ngiam KY, Ooi BC. Tracer: A framework for facilitating accurate and interpretable analytics for high stakes applications. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data; 14-19 June 2020; Portland, OR, USA. New York, NY, USA: ACM; 2020. pp. 1747-1763.
  • Öter E, Doğan Y. A comparative study on data balancing methods for Alzheimer’s disease classification. Cukurova Univ J Fac Eng 2024; 39(2): 489-501.
  • Talukder MA, Islam MM, Uddin MA, Hasan KF, Sharmin S, Alyami SA, Moni MA. Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction. J Big Data 2024; 11(1): 33.
  • Khushi M, Shaukat K, Alam TM, Hameed IA, Uddin S, Luo S, Reyes MC. A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access 2021; 9: 109960-109975.
  • Boutilier JJ, Chan TC, Ranjan M, Deo S. Risk stratification for early detection of diabetes and hypertension in resource-limited settings: Machine learning analysis. J Med Internet Res 2021; 23(1): e20123.
  • Friedrich T, Schlauderer S, Overhage S. Some things are just better rich: How social commerce feature richness affects consumers’ buying intention via social factors. Electron Mark 2021; 31: 159-180.
  • Tredennick AT, Hooker G, Ellner SP, Adler PB. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 2021; 102(6): e03336.
  • Zhang Z, Ahmed KA, Hasan MR, Gedeon T, Hossain MZ. A deep learning approach to diabetes diagnosis. In: Asian Conference on Intelligent Information and Database Systems; 10-12 April 2024; Singapore. Singapore: Springer Nature Singapore; pp. 87-99.
  • Al-Absi HR, Pai A, Naeem U, Mohamed FK, Arya S, Sbeit RA, et al. DiaNet v2 deep learning-based method for diabetes diagnosis using retinal images. Sci Rep. 2024; 14(1): 1595.
  • Maulana A, Faisal FR, Noviandy TR, Rizkia T, Idroes GM, Tallei TE, Idroes R. Machine learning approach for diabetes detection using fine-tuned XGBoost algorithm. Infol J Data Sci. 2023; 1(1): 1-7.
  • Khaleel FA, Al-Bakry AM. Diagnosis of diabetes using machine learning algorithms. Mater Today Proc. 2023; 80: 3200-3203.

Dengeleme Tekniklerinin ve Özellik Seçiminin Diyabet Tespitinde Makine Öğrenmesi Modelleri Üzerindeki Etkisi

Yıl 2025, Cilt: 37 Sayı: 1, 303 - 320, 27.03.2025
https://doi.org/10.35234/fumbd.1556260

Öz

Diyabet, küresel ölçekte önemli sağlık riskleri oluşturmaktadır. Diyabetin tespiti, hastalığın etkili yönetimi ve önlenmesi için büyük önem taşımaktadır. Bu çalışma, dengesiz veri setlerinde diyabet tespiti için çeşitli dengeleme tekniklerini ve Lasso (L1) düzenlemesi de dahil olmak üzere özellik seçim yöntemlerini birleştirerek diyabet tespitine yeni bir yaklaşım getirmektedir. Çalışmada, Random Under Sampling (RUS), Adaptive Synthetic Sampling (ADASYN) ve Synthetic Minority Over-sampling Technique (SMOTE) gibi teknikler, Random Forest (RF), CatBoost (CB), Extreme Gradient Boosting (XGB), K-En Yakın Komşu (KNN), Gaussian Naive Bayes (GNB), Lojistik Regresyon (LR) ve Gradient Boosting (GB) modelleri ile kullanılarak bu tekniklerin model doğruluğu ve genelleme yetenekleri üzerindeki etkileri değerlendirilmiştir. Bulgular, SMOTE tekniği kullanıldığında RF modelinin %93,25 ile en yüksek doğruluğa ulaştığını göstermektedir, bu da uygun veri işleme stratejilerinin tahmin sonuçlarını iyileştirmede önemini vurgulamaktadır. Ayrıca, özellik seçimi yapılmaksızın tüm özellikler kullanıldığında, RF modeli %95,31 doğruluk elde etmiş ve bu da özellik zenginliği maksimize edildiğinde modelin karmaşık desenleri yakalama kapasitesini ortaya koymaktadır. Araştırmada kullanılan kapsamlı metodoloji, diyabet tespitinde literatürdeki araştırmalardan yüksek bir doğruluğa ulaşmış ve sağlık hizmetlerinde güvenilir tahmin modelleri geliştirmek için önemli çıktılar sağlamıştır.

Kaynakça

  • World Health Organization. Diabetes. Available at: https://www.who.int/en/health-topics/noncommunicable-diseases/diabetes/#tab=tab_1 [Accessed 03 September 2024].
  • Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab 2011; 2(9): 1000167.
  • Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002; 48(3): 436-472.
  • American Diabetes Association. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diabetes 2019; 37(1): 11.
  • Harris MI, Eastman RC. Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev 2000; 16(4): 230-236.
  • Crow H, Gage H, Hampson S, Hart J, Kimber A, Storey L, Thomas H. Measurement of satisfaction with health care: implications for practice from a systematic review of the literature. Health Technol Assess 2002; 6(32): 1-10.
  • Sinap V. A comparative study of loan approval prediction using machine learning methods. Gazi Univ J Sci Part C: Design Technol 2024; 12(2): 644-663.
  • Gong Y, Liu G, Xue Y, Li R, Meng L. A survey on dataset quality in machine learning. Inform Software Technol 2023; 162: 107268.
  • Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey on missing data in machine learning. J Big Data 2021; 8: 1-37.
  • Neelima S, Govindaraj M, Subramani DK, ALkhayyat A, Mohan DC. Factors influencing data utilization and performance of health management information systems: a case study. Indian J Inform Sources Serv 2024; 14(2): 146-152.
  • Thabtah F, Hammoud S, Kamalov F, Gonsalves A. Data imbalance in classification: Experimental evaluation. Inform Sci 2020; 513: 429-441.
  • Shin J, Kim J, Lee C, Yoon JY, Kim S, Song S, Kim HS. Development of various diabetes prediction models using machine learning techniques. Diabetes Metab J 2022; 46(4): 650-657.
  • Mir A, Dhage SN. Diabetes disease prediction using machine learning on big data of healthcare. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA); 16-18 August 2018; Pune, India. New York, NY, USA: IEEE; 2018. pp. 1-6.
  • Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci 2018; 132: 1578-1585.
  • Yahyaoui A, Jamil A, Rasheed J, Yesiltepe M. A decision support system for diabetes prediction using machine learning and deep learning techniques. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK); 6-7 November 2019; Ankara, Turkey. New York, NY, USA: IEEE; 2019. pp. 1-4.
  • Khanam JJ, Foo SY. A comparison of machine learning algorithms for diabetes prediction. ICT Express 2021; 7(4): 432-439.
  • Sivaranjani S, Ananya S, Aravinth J, Karthika R. Diabetes prediction using machine learning algorithms with feature selection and dimensionality reduction. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS); 19-20 March 2021; Coimbatore, India. New York, NY, USA: IEEE; 2021. pp. 141-146.
  • Hasan MK, Alam MA, Das D, Hossain E, Hasan M. Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 2020; 8: 76516-76531.
  • Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. Classification and prediction of diabetes disease using machine learning paradigm. Health Inform Sci Syst 2020; 8: 1-14.
  • Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System: Annual survey data. Available at: https://www.cdc.gov/brfss/annual_data/annual_data.htm [Accessed 07 September 2024].
  • Tanha J, Abdi Y, Samadi N, Razzaghi N, Asadpour M. Boosting methods for multi-class imbalanced data classification: an experimental review. J Big Data 2020; 7: 1-47.
  • Sinap V. Comparative analysis of machine learning techniques for detecting potability of water. J Sci Rep A 2024; 058: 135-161.
  • Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. J Big Data 2020; 7(1): 94.
  • Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug. p. 785-794.
  • Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Mach Learn 2000; 38: 257-286.
  • Ontivero-Ortega M, Lage-Castellanos A, Valente G, Goebel R, Valdes-Sosa M. Fast Gaussian Naïve Bayes for searchlight classification analysis. NeuroImage 2017; 163: 471-479.
  • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35(5-6): 352-359.
  • Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn 2024; 113(7): 4903-4923.
  • Abacı İ, Yıldız K. SMOTE vs. KNNOR: An evaluation of oversampling techniques in machine learning. Gümüşhane University Journal of Science 2023; 13(3): 767-779.
  • Susan S, Kumar A. The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent state of the art. Eng Rep 2021; 3(4): e12298.
  • Mukherjee M, Khushi M. SMOTE-ENC: A novel SMOTE-based method to generate synthetic data for nominal and continuous features. Appl Syst Innov 2021; 4(1): 18.
  • Belete DM, Huchaiah MD. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int J Comput Appl 2022; 44(9): 875-886.
  • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. A review of feature selection methods on synthetic data. Knowl Inf Syst 2013; 34: 483-519.
  • Li Z, Sillanpää MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet 2012; 125: 419-435.
  • Raju VG, Lakshmi KP, Jain VM, Kalidindi A, Padma V. Study the influence of normalization/transformation process on the accuracy of supervised classification. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT); 20-22 August 2020; Tirunelveli, India. New York, NY, USA: IEEE; 2020. pp. 729-735.
  • Rodríguez-Pérez R, Fernández L, Marco S. Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: A systematic study. Anal Bioanal Chem 2018; 410(23): 5981-5992.
  • Dinga R, Penninx BW, Veltman DJ, Schmaal L, Marquand AF. Beyond accuracy: Measures for assessing machine learning models, pitfalls and guidelines. BioRxiv. 2019; 743138.
  • Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Physics in Medicine & Biology. 2018; 63(7): 07TR01.
  • Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 2016; 114: 24-31.
  • Elhassan T, Aljurf M. Classification of imbalance data using Tomek link (T-link) combined with random under-sampling (RUS) as a data reduction method. Glob J Technol Optim 2016; S1:111.
  • Zheng K, Cai S, Chua HR, Wang W, Ngiam KY, Ooi BC. Tracer: A framework for facilitating accurate and interpretable analytics for high stakes applications. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data; 14-19 June 2020; Portland, OR, USA. New York, NY, USA: ACM; 2020. pp. 1747-1763.
  • Öter E, Doğan Y. A comparative study on data balancing methods for Alzheimer’s disease classification. Cukurova Univ J Fac Eng 2024; 39(2): 489-501.
  • Talukder MA, Islam MM, Uddin MA, Hasan KF, Sharmin S, Alyami SA, Moni MA. Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction. J Big Data 2024; 11(1): 33.
  • Khushi M, Shaukat K, Alam TM, Hameed IA, Uddin S, Luo S, Reyes MC. A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access 2021; 9: 109960-109975.
  • Boutilier JJ, Chan TC, Ranjan M, Deo S. Risk stratification for early detection of diabetes and hypertension in resource-limited settings: Machine learning analysis. J Med Internet Res 2021; 23(1): e20123.
  • Friedrich T, Schlauderer S, Overhage S. Some things are just better rich: How social commerce feature richness affects consumers’ buying intention via social factors. Electron Mark 2021; 31: 159-180.
  • Tredennick AT, Hooker G, Ellner SP, Adler PB. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 2021; 102(6): e03336.
  • Zhang Z, Ahmed KA, Hasan MR, Gedeon T, Hossain MZ. A deep learning approach to diabetes diagnosis. In: Asian Conference on Intelligent Information and Database Systems; 10-12 April 2024; Singapore. Singapore: Springer Nature Singapore; pp. 87-99.
  • Al-Absi HR, Pai A, Naeem U, Mohamed FK, Arya S, Sbeit RA, et al. DiaNet v2 deep learning-based method for diabetes diagnosis using retinal images. Sci Rep. 2024; 14(1): 1595.
  • Maulana A, Faisal FR, Noviandy TR, Rizkia T, Idroes GM, Tallei TE, Idroes R. Machine learning approach for diabetes detection using fine-tuned XGBoost algorithm. Infol J Data Sci. 2023; 1(1): 1-7.
  • Khaleel FA, Al-Bakry AM. Diagnosis of diabetes using machine learning algorithms. Mater Today Proc. 2023; 80: 3200-3203.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer)
Bölüm MBD
Yazarlar

Vahid Sinap 0000-0002-8734-9509

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 25 Eylül 2024
Kabul Tarihi 24 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Sinap, V. (2025). The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 303-320. https://doi.org/10.35234/fumbd.1556260
AMA Sinap V. The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):303-320. doi:10.35234/fumbd.1556260
Chicago Sinap, Vahid. “The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 303-20. https://doi.org/10.35234/fumbd.1556260.
EndNote Sinap V (01 Mart 2025) The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 303–320.
IEEE V. Sinap, “The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 303–320, 2025, doi: 10.35234/fumbd.1556260.
ISNAD Sinap, Vahid. “The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 303-320. https://doi.org/10.35234/fumbd.1556260.
JAMA Sinap V. The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:303–320.
MLA Sinap, Vahid. “The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 303-20, doi:10.35234/fumbd.1556260.
Vancouver Sinap V. The Impact of Balancing Techniques and Feature Selection on Machine Learning Models for Diabetes Detection. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):303-20.