Araştırma Makalesi
BibTex RIS Kaynak Göster

Kanat Profili ve Yerleşiminin Gövde Kanat Harmanlı Uçakların Aerodinamik Performansına Etkisi

Yıl 2025, Cilt: 37 Sayı: 1, 351 - 361, 27.03.2025
https://doi.org/10.35234/fumbd.1566544

Öz

Gövde kanat harmanlı tasarım, toplam sürtünmeyi, emisyonları, yakıt tüketimini ve gürültü seviyelerini azaltarak gelecek için umut vaat etmektedir. Bu çalışmanın amacı, özellikle orta gövde ve dış kanatlara odaklanarak, kanatçık seçiminin Gövde kanat harmanlı tasarımın aerodinamik özellikleri üzerindeki etkisini aydınlatmaktır. Bu amaca ulaşmak için, XFLR5 yazılımı kullanılarak ve MH 60 ve NACA 6412 kanatçıkları kullanılarak dört farklı Orta İrtifa Uzun Dayanıklılık (MALE) İnsansız Hava Aracı (İHA) gövde kanat harmanlı tasarımı için karşılaştırmalı analizler yapılmıştır. MH60 gövde kanat harmanlı tasarımının tamamında maksimum kaldırma-sürükleme oranı 26,98’e ulaşırken, NACA 6412 kanat profilinin dış kanata uygulanması kayda değer bir artışa yol açarak maksimum kaldırma-sürükleme oranının 31,83 olmasını sağlamıştır. Bu, Gövde kanat harmanlı tasarımın genel aerodinamik verimliliğinde %18’lik etkileyici bir artışı temsil etmektedir. Ayrıca, orta gövdede kuyruksuz bir kanat profili ile dış kanatlarda yüksek kaldırma kanat profili kombinasyonu, test edilen tasarımlar arasında en iyi aerodinamik performansı sağlayan optimum konfigürasyon olarak ortaya çıkmıştır. Çalışmanın bulguları, olağanüstü aerodinamik performansa sahip gelecekteki ses altı Gövde kanat uçaklarının üretilmesi için önemli sonuçlar doğurmaktadır. Bu araştırma, kanat seçimi ve konfigürasyonunun önemini vurgulayarak gelişmiş gövde kanat harmanlı tasarımlarının devam eden gelişimine değerli bilgiler katmaktadır.

Kaynakça

  • Gauvrit-Ledogar J, Defoort S, Tremolet A, Morel F. Multidisciplinary overall aircraft design process dedicated to blended wing body configurations. Aviat Technol Integr Oper Conf. 2018;3025.
  • Katz J, Plotkin A. Low-Speed Aerodynamics. Cambridge: Cambridge University Press; 2001.
  • Bolsunovsky AL, et al. Flying wing—problems and decisions. Aircr Des. 2001;4(4):193-219.
  • Liebeck RH. Design of the blended wing body subsonic transport. J Aircr. 2004;41(1):10-25.
  • Scholz D. A student project of a blended wing body aircraft - From conceptual design to flight testing. EWADE 2007: 8th European Workshop on Aircraft Design Education; 2007 May 30-Jun 2; Samara, Russia.
  • Hileman JI, Spakovszky ZS, Drela M, Sargeant MA, Jones A. Airframe design for silent fuel-efficient aircraft. J Aircr. 2010;47(3):956-69.
  • Bonet JT, et al. Environmentally Responsible Aviation (ERA) Project-N+ 2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report. NASA; 2011.
  • Bradley MK, Droney CK. Subsonic Ultra Green Aircraft Research: Phase I Final Report. NASA CR-216847; 2011.
  • Nickol C. Hybrid wing body configuration scaling study. AIAA Aerosp Sci Meet. 2012;337.
  • Mohr B, Paulus D, Baier H, Hornung M. Design of a 450-passenger blended wing body aircraft for active control investigations. Proc Inst Mech Eng G J Aerosp Eng. 2012;226(12):1513-22.
  • Gern FH. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft. AIAA Struct Struct Dyn Mater Conf. 2013.
  • Dehpanah P, Nejat A. The aerodynamic design evaluation of a blended-wing-body configuration. Aerosp Sci Technol. 2015;43:96-110.
  • Prakasha PS, et al. Model-based collaborative design & optimization of blended wing body aircraft configuration: AGILE EU project. Aviat Technol Integr Oper Conf. 2018;4006.
  • Larrimer B. Beyond Tube and Wing [Internet]. NASA; 2020 [cited 2024 Feb 5]. Available from: https://www.nasa.gov/sites/default/files/atoms/files/beyond_tube-and-wing_tagged.pdf
  • Dakka S, Johnson O. Aerodynamic design and exploration of a blended wing body aircraft at subsonic speed. Int J Aviat Aeronaut Aerosp. 2019;6(5):17.
  • Reist TA, Zingg DW. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft. AIAA Appl Aerodyn Conf. 2015.
  • Yan WF, Wu JH, Zhang YL. Aerodynamic performance of blended wing body aircraft with distributed propulsion. Adv Mater Res. 2014;1016:354-8.
  • Lehmkuehler K, Wong K, Verstraete D. Design and test of a UAV blended wing body configuration. Proc Int Counc Aeronaut Sci. 2012:23-8.
  • Shim H, Park SO. Low-speed wind-tunnel test results of a BWB-UCAV model. Procedia Eng. 2013;67:50-8.
  • Panagiotou P, Fotiadis-Karras S, Yakinthos K. Conceptual design of a blended wing body MALE UAV. Aerosp Sci Technol. 2018;73:32-47.
  • Baig AZ, et al. A new methodology for aerodynamic design and analysis of a small scale blended wing body. J Aeronaut Aerosp Eng. 2018;7:1.
  • Hoe PJ, Mohd NARN. Numerical prediction of blended wing body aerodynamic characteristics at subsonic speed. J Teknol. 2014;71(2).
  • Chung PH, Ma DM, Shiau JK. Design, manufacturing, and flight testing of an experimental flying wing UAV. Appl Sci. 2019;9(15):3043.
  • Communier D, et al. Aero structural modeling of a wing using CATIA V5 and XFLR5 software and experimental validation. AIAA Atmos Flight Mech Conf. 2015;2558.
  • Khushbash S, Javed A, Shams TA. Computational analysis of low mass moment of inertia flying wing. Int Bhurban Conf Appl Sci Technol. 2021:204-11.
  • Kaya D, Kutay AT, Özkanaktı H. Flight time calculation of a blended-wing-body UAV through improved blade element and momentum theory. Ankara Int Aerosp Conf. 2021.
  • Siouris S, Qin N. Study of the effects of wing sweep on the aerodynamic performance of a blended wing body aircraft. Proc Inst Mech Eng G J Aerosp Eng. 2007;221(1):47-55.
  • Hepperle M. Airfoil Design for Light Tailless Airplanes. 2004.
  • Eppler R. Airfoil data. In: Airfoil Design and Data. Berlin: Springer; 1990. p. 163-512.
  • Liebeck RH. Calculation of low Reynolds number flows at high angles of attack. J Aircr. 1991;28(4).

Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft

Yıl 2025, Cilt: 37 Sayı: 1, 351 - 361, 27.03.2025
https://doi.org/10.35234/fumbd.1566544

Öz

The Blended Wing Body (BWB) design holds promise for the future by lowering total drag, emissions, fuel consumption, and noise levels. The aim of this study is to elucidate the influence of airfoil selection on the aerodynamic characteristics of the BWB, particularly focusing on the center body and outer wings. To achieve this objective, comparative analyses were conducted for four different Medium Altitude Long Endurance (MALE) Unmanned Aerial Vehicle (UAV) BWB designs, utilizing XFLR5 software and employing MH 60 and NACA 6412 airfoils. The maximum lift-drag ratio in the entire MH60 BWB design reached 26.98, while the implementation of the NACA 6412 airfoil on the outer wing led to a notable increase, resulting in a maximum lift-drag ratio of 31.83. This represents an impressive 18% enhancement in BWB’s overall aerodynamic efficiency. Furthermore, the combination of a reflex airfoil on the center body, coupled with a high-lift airfoil on the outer wings, emerged as the optimal configuration, yielding the best aerodynamic performance among the tested designs. The study’s findings have significant consequences for crafting future subsonic BWB aircraft with exceptional aerodynamic performance. This research adds valuable information to the ongoing development of advanced BWB designs by highlighting the importance of airfoil selection and configuration.

Kaynakça

  • Gauvrit-Ledogar J, Defoort S, Tremolet A, Morel F. Multidisciplinary overall aircraft design process dedicated to blended wing body configurations. Aviat Technol Integr Oper Conf. 2018;3025.
  • Katz J, Plotkin A. Low-Speed Aerodynamics. Cambridge: Cambridge University Press; 2001.
  • Bolsunovsky AL, et al. Flying wing—problems and decisions. Aircr Des. 2001;4(4):193-219.
  • Liebeck RH. Design of the blended wing body subsonic transport. J Aircr. 2004;41(1):10-25.
  • Scholz D. A student project of a blended wing body aircraft - From conceptual design to flight testing. EWADE 2007: 8th European Workshop on Aircraft Design Education; 2007 May 30-Jun 2; Samara, Russia.
  • Hileman JI, Spakovszky ZS, Drela M, Sargeant MA, Jones A. Airframe design for silent fuel-efficient aircraft. J Aircr. 2010;47(3):956-69.
  • Bonet JT, et al. Environmentally Responsible Aviation (ERA) Project-N+ 2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report. NASA; 2011.
  • Bradley MK, Droney CK. Subsonic Ultra Green Aircraft Research: Phase I Final Report. NASA CR-216847; 2011.
  • Nickol C. Hybrid wing body configuration scaling study. AIAA Aerosp Sci Meet. 2012;337.
  • Mohr B, Paulus D, Baier H, Hornung M. Design of a 450-passenger blended wing body aircraft for active control investigations. Proc Inst Mech Eng G J Aerosp Eng. 2012;226(12):1513-22.
  • Gern FH. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft. AIAA Struct Struct Dyn Mater Conf. 2013.
  • Dehpanah P, Nejat A. The aerodynamic design evaluation of a blended-wing-body configuration. Aerosp Sci Technol. 2015;43:96-110.
  • Prakasha PS, et al. Model-based collaborative design & optimization of blended wing body aircraft configuration: AGILE EU project. Aviat Technol Integr Oper Conf. 2018;4006.
  • Larrimer B. Beyond Tube and Wing [Internet]. NASA; 2020 [cited 2024 Feb 5]. Available from: https://www.nasa.gov/sites/default/files/atoms/files/beyond_tube-and-wing_tagged.pdf
  • Dakka S, Johnson O. Aerodynamic design and exploration of a blended wing body aircraft at subsonic speed. Int J Aviat Aeronaut Aerosp. 2019;6(5):17.
  • Reist TA, Zingg DW. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft. AIAA Appl Aerodyn Conf. 2015.
  • Yan WF, Wu JH, Zhang YL. Aerodynamic performance of blended wing body aircraft with distributed propulsion. Adv Mater Res. 2014;1016:354-8.
  • Lehmkuehler K, Wong K, Verstraete D. Design and test of a UAV blended wing body configuration. Proc Int Counc Aeronaut Sci. 2012:23-8.
  • Shim H, Park SO. Low-speed wind-tunnel test results of a BWB-UCAV model. Procedia Eng. 2013;67:50-8.
  • Panagiotou P, Fotiadis-Karras S, Yakinthos K. Conceptual design of a blended wing body MALE UAV. Aerosp Sci Technol. 2018;73:32-47.
  • Baig AZ, et al. A new methodology for aerodynamic design and analysis of a small scale blended wing body. J Aeronaut Aerosp Eng. 2018;7:1.
  • Hoe PJ, Mohd NARN. Numerical prediction of blended wing body aerodynamic characteristics at subsonic speed. J Teknol. 2014;71(2).
  • Chung PH, Ma DM, Shiau JK. Design, manufacturing, and flight testing of an experimental flying wing UAV. Appl Sci. 2019;9(15):3043.
  • Communier D, et al. Aero structural modeling of a wing using CATIA V5 and XFLR5 software and experimental validation. AIAA Atmos Flight Mech Conf. 2015;2558.
  • Khushbash S, Javed A, Shams TA. Computational analysis of low mass moment of inertia flying wing. Int Bhurban Conf Appl Sci Technol. 2021:204-11.
  • Kaya D, Kutay AT, Özkanaktı H. Flight time calculation of a blended-wing-body UAV through improved blade element and momentum theory. Ankara Int Aerosp Conf. 2021.
  • Siouris S, Qin N. Study of the effects of wing sweep on the aerodynamic performance of a blended wing body aircraft. Proc Inst Mech Eng G J Aerosp Eng. 2007;221(1):47-55.
  • Hepperle M. Airfoil Design for Light Tailless Airplanes. 2004.
  • Eppler R. Airfoil data. In: Airfoil Design and Data. Berlin: Springer; 1990. p. 163-512.
  • Liebeck RH. Calculation of low Reynolds number flows at high angles of attack. J Aircr. 1991;28(4).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hava-Uzay Ulaşımı, Uçak Performansı ve Uçuş Kontrol Sistemleri
Bölüm MBD
Yazarlar

Seyhun Durmuş 0000-0002-1409-7355

Yayımlanma Tarihi 27 Mart 2025
Gönderilme Tarihi 13 Ekim 2024
Kabul Tarihi 27 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 37 Sayı: 1

Kaynak Göster

APA Durmuş, S. (2025). Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 351-361. https://doi.org/10.35234/fumbd.1566544
AMA Durmuş S. Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2025;37(1):351-361. doi:10.35234/fumbd.1566544
Chicago Durmuş, Seyhun. “Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37, sy. 1 (Mart 2025): 351-61. https://doi.org/10.35234/fumbd.1566544.
EndNote Durmuş S (01 Mart 2025) Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37 1 351–361.
IEEE S. Durmuş, “Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, ss. 351–361, 2025, doi: 10.35234/fumbd.1566544.
ISNAD Durmuş, Seyhun. “Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 37/1 (Mart 2025), 351-361. https://doi.org/10.35234/fumbd.1566544.
JAMA Durmuş S. Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37:351–361.
MLA Durmuş, Seyhun. “Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 37, sy. 1, 2025, ss. 351-6, doi:10.35234/fumbd.1566544.
Vancouver Durmuş S. Impact of Airfoil Type and Placement on Aerodynamic Performance of Blended Wing Body Aircraft. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2025;37(1):351-6.