Kaliteli bir eğitim için Yükseköğretim kurumları yönetimsel ve eğitimsel anlamda doğru kararlar verebilmelidir. Yanlış veya eksik yapılan akademik planlama, başarısız olabilecek öğrenciler, mezun öğrencilerin yol haritaları, okuldan ayrılabilecek öğrenciler gibi konular Yükseköğretim kurumlarının problemlerindendir. Bu problemlerin çözülmesi ve tedbirlerin alınması eğitimin kalitesi için son derece önemlidir. Yükseköğretim kurumlarında eğitime ait giderek artan veriler bulunmaktadır. Giderek artan bu verilerin yönetime, eğitimcilere veya eğitime hiçbir yararı yoktur. Bahsedilen problemler hakkında yüksek oranlardaki doğruluklarla tahminler yapılabilmekte ve anlamlı sonuçlar, veri madenciliği yöntemleri ile ortaya çıkarılabilmektedir. Veri madenciliği yöntemleri akademik müdahaleler için güçlü bir araçtır. Bu çalışmada, veri madenciliği yöntemlerinden olan Yapay Sinir Ağları (YSA) ve Karar Ağaçları (KA) kullanılarak Fırat Üniversitesi, Eğitim Fakültesi, Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü (BÖTE) öğrencilerinin mezuniyet notlarının tahmin edilmesi gerçekleştirilmiştir. Gerçekleştirilen benzetim çalışmalarında YSA'nın, KA'ya oranla daha iyi tahmin başarımı sağladığı görülmüştür.
– educational data mining prediction of student’s academic achievements artificial neural networks decision trees
Kaliteli bir eğitim için Yükseköğretim kurumları yönetimsel ve eğitimsel anlamda doğru kararlar verebilmelidir. Yanlış veya eksik yapılan akademik planlama, başarısız olabilecek öğrenciler, mezun öğrencilerin yol haritaları, okuldan ayrılabilecek öğrenciler gibi konular Yükseköğretim kurumlarının problemlerindendir. Bu problemlerin çözülmesi ve tedbirlerin alınması eğitimin kalitesi için son derece önemlidir. Yükseköğretim kurumlarında eğitime ait giderek artan veriler bulunmaktadır. Giderek artan bu verilerin yönetime, eğitimcilere veya eğitime hiçbir yararı yoktur. Bahsedilen problemler hakkında yüksek oranlardaki doğruluklarla tahminler yapılabilmekte ve anlamlı sonuçlar, veri madenciliği yöntemleri ile ortaya çıkarılabilmektedir. Veri madenciliği yöntemleri akademik müdahaleler için güçlü bir araçtır. Bu çalışmada, veri madenciliği yöntemlerinden olan Yapay Sinir Ağları (YSA) ve Karar Ağaçları (KA) kullanılarak Fırat Üniversitesi, Eğitim Fakültesi, Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü (BÖTE) öğrencilerinin mezuniyet notlarının tahmin edilmesi gerçekleştirilmiştir. Gerçekleştirilen benzetim çalışmalarında YSA'nın, KA'ya oranla daha iyi tahmin başarımı sağladığı görülmüştür.
eğitsel veri madenciliği öğrencilerin başarılarının tahmini yapay sinir ağları karar ağaçları
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 18 Ocak 2014 |
Gönderilme Tarihi | 23 Mayıs 2013 |
Yayımlandığı Sayı | Yıl 2013 Cilt: 6 Sayı: 3 |