BibTex RIS Kaynak Göster

GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ

Yıl 2017, Cilt: 32 Sayı: 1, 0 - 0, 23.03.2017
https://doi.org/10.17341/gazimmfd.300600

Öz

Sınıflandırma kural madenciliği en çok çalışılan veri madenciliği problemlerindendir. Bu makalede birden fazla sınıflama etiketi bulunan ve tahmin edilecek birden fazla hedef niteliğin olduğu veritabanlarında, sınıflandırma kural madenciliğinin daha genel bir hali olan kompleks ve fazla çalışılmamış genelleştirilmiş kural keşfi problemi için ilk kez kimya tabanlı Yapay Kimyasal Reaksiyon Optimizasyon Algoritması (YAKROA) kullanılmıştır. İlginçlik kriteri de eklenerek; algoritmanın keşfedeceği kuralların sadece doğru ve anlaşılabilir değil aynı zamanda ilginç, beklenmedik ve sürpriz olması için de gerekli düzenlemeler yapılmıştır. Farklı amaçlar doğrultusunda değişik veritabanlarında farklı kurallar kümesi, esnek bir şekilde algoritmadaki temsil biçimi ve amaç fonksiyonunun düzenlenmesiyle bulunmuştur. Farklı özellikte halka açık gerçek veritabanlarında YAKROA’nın sınıflandırma kural keşfi problemindeki performansı genetik algoritma, parçacık sürü optimizasyon algoritması ve karınca koloni optimizasyon algoritması ile karşılaştırılmıştır. Deneysel sonuçlardan, YAKROA’nın veri madenciliğinin bu özel alanındaki performansının umut verici olduğu görülmüştür. YAKROA’nın farklı veri madenciliği problemleri; özellikle birliktelik kurallarının keşfi, kümeleme kurallarının keşfi, ardışık örüntü keşfi vb. için etkili bir çözüm yöntemi olarak kullanılabileceği öngörülmektedir.

Kaynakça

  • Han J., Kamber M., Pei J., Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems, 3. Baskı, 744 sayfa, 2011
  • Setiono R., Azcarraga A., Hayashi Y., Using Sample Selection to Improve Accuracy and Simplicity of Rules Extracted from Neural Networks for Credit Scoring Applications, International Journal of Computational Intelligence and Applications, 14(4), 1550021, 2015.
  • Quinlan J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1992.
  • Breiman L., Friedman J. H., Olshen R. A., Stone C. J., Classification and Regression Trees, Wadsworth, 1984.
  • Berzal F., Cubero J. C., Sánchez D., Serrano J. M., Art: A Hybrid Classification Model, Machine Learning, 54(1), 67-92, 2004.
  • Dai Q., Zhang C. Wu H., Research of Decision Tree Classification Algorithm in Data Mining, International Journal of Database Theory and Application, 9(5), 1-8, 2016.
  • Alatas B., Akin E., Sınıflandırma Kurallarının Karınca Koloni Algoritmasıyla Keşfi, ASYU Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu, Istanbul, 62-66, 2006.
  • Aggarwal C. C., Data Classification: Algorithms and Applications, CRC Press, 2014.
  • Sharma P., Discovery of Classification Rules Using Distributed Genetic Algorithm, Procedia Computer Science, 46, 276-284, 2015.
  • Panda M., Abraham A., Hybrid Evolutionary Algorithms for Classification Data Mining, Neural Computing and Applications, 26(3), 507-523, 2015.
  • Gundogan K. K., Alatas B., Karci A., Mining Classification Rules by Using Genetic Algorithms with Non-Random Initial Population and Uniform Operator, Turkish Journal of Electrical Engineering & Computer Sciences, 12(1), 43-52, 2004.
  • Yang L., Li K., Zhang W., Ke Z., Ant Colony Classification Mining Algorithm Based on Pheromone Attraction and Exclusion, Soft Computing, 1-13, 2016.
  • Liang Z., Sun J., Lin Q., Du Z., Chen J., Ming Z., A Novel Multiple Rule Sets Data Classification Algorithm Based on Ant Colony Algorithm, Applied Soft Computing, 38, 1000-1011, 2016.
  • Asadi S., Shahrabi J., ACORI: A Novel ACO Algorithm for Rule Induction, Knowledge-Based Systems, 97, 175-187, 2016.
  • Alatas B., Akin E., Multi-Objective Rule Mining Using a Chaotic Particle Swarm Optimization Algorithm, Knowledge-Based Systems, 22(6), 455-460, 2009.
  • Tapkan P., Özbakır L., Kulluk S., Baykasoğlu, A., A Cost-Sensitive Classification Algorithm: BEE-Miner, Knowledge-Based Systems, 95, 99-113, 2016.
  • Celik M., Karaboga D., Koylu F., Artificial Bee Colony Data Miner (ABC-Miner), IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA), 96-100, 2011.
  • Al-Sheshtawi K. A., Abdul-Kader H. M., Elsisi A. B., A Novel Artificial Immune Clonal Selection Classification and Rule Mining with Swarm Learning Model, Connection Science, 25(2-3), 75-127, 2013.
  • Köklü M., Kahramanlı H., Allahverdi, N., A New Accurate and Efficient Approach to Extract Classification Rules, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3), 477-486, 2014.
  • Akyol S., Alatas, B, Automatic mining of accurate and comprehensible numerical classification rules with cat swarm optimization algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(4), 839-857, 2016.
  • Alatas B., Akin E., Mining Fuzzy Classification Rules Using an Artificial Immune System with Boosting, Advances in Databases and Information Systems, 283-293, Springer Berlin Heidelberg, 2005.
  • Alatas B., Akin E., FCACO: Fuzzy Classification Rules Mining Algorithm with Ant Colony Optimization, Advances in Natural Computation, 787-797, Springer Berlin Heidelberg, 2005.
  • Pourpanah F., Lim C. P., Saleh J. M., A Hybrid Model of Fuzzy ARTMAP and Genetic Algorithm for Data Classification and Rule Extraction, Expert Systems with Applications, 49, 74-85, 2016.
  • Kar A. K., Bio Inspired Computing–A Review of Algorithms and Scope of Applications, Expert Systems with Applications, 59, 20-32, 2016.
  • Akyol S., Alatas B., Plant Intelligence Based Metaheuristic Optimization Algorithms, Artificial Intelligence Review, 1-46, 2016.
  • Blum C., Raidl G. R., Further Hybrids and Conclusions, Hybrid Metaheuristics, 127-136, Springer International Publishing, 2016.
  • Ozbay F. A., Alatas B., Review of Musics based Computational Intelligence Algorithms, 1st International Conference on Engeneering Technology and Applied Sciences, Afyon Kocatepe University, 663-669, 2016.
  • Bingol H., Alatas B., Chaotic League Championship Algorithms, Arabian Journal for Science and Engineering, 41(12), 1-25, 2016.
  • Alatas B, ACROA: Artificial Chemical Reaction Optimization Algorithm for Global Optimization, Expert Systems with Applications, 38(10), 13170-13180, 2011.
  • Alatas B., A Novel Chemistry Based Metaheuristic Optimization Method for Mining of Classification Rules, Expert Systems with Applications, 39(12), 11080-11088, 2012.
  • Alatas B., Karci A., Genetik Algoritmalarda Düzenli Popülasyon ve Düzenli Operatör, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 3(1-2), 11-26, 2003.
  • Demir M., Karci A., Veri Kümelemede Fidan Gelişim Algoritmasının Kullanılması, 12. Elektrik, Elektronik, Bilgisayar, Biyomedikal Mühendisliği Ulusal Kongresi ve Fuarı, Eskisehir, 14-18 2007.
  • Karci A., Alatas A., Akin E., Fidan Gelişim Algoritması, ASYU Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu, Istanbul, 57-61, 2006.
  • Karci A., Theory of Saplings Growing up Algorithm, Lecture Notes in Computer Science, 4431, 450-460, 2007.
  • Karci A., Alatas B., Thinking Capability of Saplings Growing Up Algorithm, Lecture Notes in Computer Science, 4224, 386-393, 2006.
  • Eberbach E., The Role of Completeness in Convergence of Evolutionary Algorithms, IEEE Congress on Evolutionary Computation, 2, 1706-1713, 2005.
  • Lichman M., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, Erişim tarihi 1 Temmuz 2014.
  • Freitas A. A., On Objective Measures of Rule Surprisingness, 2nd European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD-98), Lecture Notes in Artificial Intelligence, 1510, 1-9, 1998.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Bilal Alataş

A. Bedri Özer

Yayımlanma Tarihi 23 Mart 2017
Gönderilme Tarihi 9 Ocak 2015
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 1

Kaynak Göster

APA Alataş, B., & Özer, A. B. (2017). GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(1). https://doi.org/10.17341/gazimmfd.300600
AMA Alataş B, Özer AB. GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ. GUMMFD. Mart 2017;32(1). doi:10.17341/gazimmfd.300600
Chicago Alataş, Bilal, ve A. Bedri Özer. “GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32, sy. 1 (Mart 2017). https://doi.org/10.17341/gazimmfd.300600.
EndNote Alataş B, Özer AB (01 Mart 2017) GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32 1
IEEE B. Alataş ve A. B. Özer, “GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ”, GUMMFD, c. 32, sy. 1, 2017, doi: 10.17341/gazimmfd.300600.
ISNAD Alataş, Bilal - Özer, A. Bedri. “GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32/1 (Mart 2017). https://doi.org/10.17341/gazimmfd.300600.
JAMA Alataş B, Özer AB. GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ. GUMMFD. 2017;32. doi:10.17341/gazimmfd.300600.
MLA Alataş, Bilal ve A. Bedri Özer. “GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 32, sy. 1, 2017, doi:10.17341/gazimmfd.300600.
Vancouver Alataş B, Özer AB. GENELLEŞTİRİLMİŞ İLGİNÇ SINIFLANDIRMA KURALLARININ YAPAY KİMYASAL REAKSİYON OPTİMİZASYON ALGORİTMASI İLE KEŞFİ. GUMMFD. 2017;32(1).