Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, characterization, thermal properties and reactivity ratios of methacrylate copolymers including methoxy group

Yıl 2018, Cilt: 33 Sayı: 3, 1155 - 1170, 14.08.2018
https://doi.org/10.17341/gazimmfd.416417

Öz

In this study, the monomer 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (MPAEMA) was synthesized from sodium methacrylate and 2-chloro-N-(4-methoxyphenyl) acetamide. The structure of monomer FT-IR, 1H-NMR and 13C-NMR was characterized by using spectroscopic techniques. The homopolymer and copolymers of MPAEMA with methyl methacrylate (MMA) were prepared by free radical polymerization method. The poly (MPAEMA) homopolymer and poly (MPAEMA-co-MMA) were characterized by FT-IR, 1 H-NMR and 13C-NMR spectroscopic techniques, gel permeation chromatographyGPC and TGA/DTA thermal analysis methods. The copolymers of MPAEMA monomer with MMA at different ratios were synthesized by 15% conversion in the same way and series were formed. Lowconversion copolymer compositions were determined by Elemental Analysis results and characterized by FT-IR and TGA thermal analysis. The monomer reactivity ratios for copolymer systems were calculated using the linear methods Fineman Ross, Kelen Tüdos and the nonlinear method RREVM, and all results were discussed. Table A. The monomer reactivity ratios for MPAEMA-co-MMA copolymer system Method rMPAEMA rMMA r1.r2 KT 0,521 1,183 0,616 FR 0,515 1,193 0,614 RREVM 0,510 1,188 0,606 r1: rMPAEMA ve r2: rMMAPurpose: The aim of the research is to synthesize and characterize a new monomer and copolymer, and to investigate its thermal properties. Also, the reactivity of the monomers in the copolymer synthesized in this work was also investigated. Theory and Methods: Synthesis and characterization of monomer, homopolymer and copolymer were carried out. The heat behavior of the polymers was investigated. The monomer reactivity ratios of the copolymers synthesized at low conversion were calculated by Elemental Analysis.
Results: Polydispersity of the homopolymer was found to be close to the individual. When TGA analyzes were performed to determine the thermal properties of the polymers, it was found that the thermal stability of the polymers increased with the addition of another acrylate derivative. The linear methods Kelen Tüdos and Fineman Ross and the nonlinear method were found to be r1.r2≈0,61 by the RREVM method. Conclusion: The monomers were successfully synthesized. As the amount of methyl methacrylate in the copolymers increases, the thermal stability of the copolymer also increases. It was observed that the synthesized copolymers exhibited the ideal copolymer behavior.  

Kaynakça

  • İsmail O., ve Kuyulu, A., Akrilik asit esaslı süper absorban kopolimerlerin sentezi ve bahçe bitkilerine uygulanması, Yıldız Teknik Üniversitesi Dergisi, 3, 33-40, 2003.
  • Zengin H.B., Basan S., Ekberov O.H., Maleik Anhidrit–Stiren Kopolimerinin Amid ve İmid Türevlerinin Sentezi ve Isısal Davranışları, Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 26(2), 2005.
  • Nie L., Narayan R., Grafting cellulose acetate with styrene maleic anhydride random copolymers for improved dimensional stability of cellulose acetate, Journal of Applıed Polymer Scıence, 54, 601-607, 1994.
  • Barım G., Coşkun M., (2,3-Difenil-1,3-oksazolidin-5-il)metil metakrilat’ın metil metakrilat ile kopolimerlerinin sentezi, karakterizasyonu ve termal özellikleri, Adıyaman Üniversitesi, Fen Bilimleri Dergisi, 2(2), 75-85, 2012.
  • Soykan C., İlter Z., Alkil metakrilatların glisidilmetakrilat ile kopolimerlerinin sentezi ve karakterizasyonu, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(1-2), 103-110, 2001.
  • Nicholson J.W., Brookman P.J., Lacy O. M., Sayers G.S., Wilson A.D., A study of the nature and formation of zinc polyacrylate cement using Fourier transform infrared spectroscopy, Journal of Biomedical Materials Research, 22, 623-631, 1988.
  • Parker S., Braden M., Water absorption of methacrylate soft lining materials, Biomaterials, 10, 91-95, 1989.
  • Patel J.N., Dolia M.B., Patel K.H., Patel R.M., Homopolymer of 4-chloro-3-methyl Phenyl Methacrylate and its Copolymers with Butyl Methacrylate: Synthesis, Characterization, Reactivity Ratios and Antimicrobial Activity, Journal of Polymer Research, 13, 219-228, 2006.
  • Açıkbaş Y., Çankaya N., Capan R., Erdogan M., Soykan C., Swelling behavior of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapors by quartz crystal microbalance technique, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 53(1), 18–25, 2016.
  • Hemalatha P., Veeraiah M.K., Kumar S. P., Madegowda N.M., American M. M., Reactivity ratios of n-vinylpyrrolidone-acrylic acid copolymer, Journal of Polymer Science, 4(1), 16-23, 2014.
  • Mark H.F., Bikales N.M., Overberger C.G., Menges G., Encyclopedia of Polymer Science and Engineering, Wiley Interscience, New York, 1986.
  • Fineman M., Ross S.D., Reactivity Ratios of new vinyl monomers, J. Macromol, Sci. Chem. A9(1), 1975.
  • Kelen T.F., Tudos B. Turcsanyi, Confidence intervals for copolymerization reactivity ratios determined by the Kelen–Tudos method, Polymer. Bulletin, 2, 71–76, 1980.
  • Tudos F., Kelen T., Turcsanyi B., Kennedy J.P., Analysis of the linear methods for determining copolymerization reactivity ratios. VI. A comprehensive critical reexamination of oxonium ion copolymerizations, J. Polym. Sci. Polym. Chem. Ed. 19, 1119–1132, 1981.
  • Çankaya N., Aril gruplu metakrilat monomerinin atom transfer radikal polimerizasyonu, Türkiye Alim Kitapları, morebooks publishing, Lambert Academic Publishing, Saarbrücken-Germany, 2015.
  • Çankaya N., Demirelli, K., Atom transfer radical copolymerization of phenoxycarbonylmethyl methacrylate with methylmethacrylate: their monomer reactivity ratios and thermal stabilities, Journal of the Chemical Society of Pakistan, 33(6), 884, 2011.
  • Çankaya N., Temüz M.M., Characterization and Monomer Ratios of Grafted Cellulose with N-(4-nitrophenyl)acrylamide and Methyl Methacrylate by Atom Transfer Radical Polymerization, Cellulose Chemıstry and Technology, 46(9-10), 551-558, 2012.
  • Çankaya N., Temüz M.M., Monomer Reactivity Ratios of Grafted Cellulose with N-cyclohexylacrylamide and Methyl Methacrylate by Atom Transfer Radical Polymerization, Cellulose Chemıstry and Technology, 48(3-4), 209-215, 2014.
  • Erol I., Kolu S., Copolymers of a new methacrylate monomer bearing oxime ester and ether with methyl methacrylate: synthesis, characterization, monomer reactivity ratios, and biological activity, Journal of Applied Polymer Science., 120, 279–290, 2011.
  • Ilter Z., Soykan C., Solmaz A., Copolymers of 7-Methoxy-2-Acetyl Benzofuryl Methylmethacrylate With Styrene:Synthesis, Characterization, Reactivity Ratios and Determination of Kinetic Parameters With Thermogravimetric Analysis, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52, 175–185, 2015.
  • Nanjundan S., et al., Homopolymer of 4-benzoylphenyl Methacrylate and its Copolymers with Glycidyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios and Application as Adhesives, React. and Func. Polym. 62, 11-24, 2005.
  • Soykan C., Delibas A., Coskun R., Novel copolymers of 4-chloronaphthyl methacrylate with acrylonitrile: determination of monomer reactivity ratios and antimicrobial activity, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 46, 250-267, 2009.
  • Soykan C., Yakuphanoglu F., Sahin M. Synthesis, Antimicrobial Activity and Semi-conducting Properties of Novel 2-(4-Chloro-1-Naphtyloxy)-2-Oxoethyl Methacrylate with 2-(Diethylamino)Ethyl Methacrylate Copolymers, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 50, 953–965, 2013.
  • Karatas F., Cansiz A., Kara H., Karatepe M., Koparir M., Synthesis of two new acetanilide derivatives and their effect on the serum antioxidant vitamins (A, E, and C) and the MDA level in rats, Russian Journal of Bioorganic Chemistry, 31(5), 499-501, 2005.

Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi

Yıl 2018, Cilt: 33 Sayı: 3, 1155 - 1170, 14.08.2018
https://doi.org/10.17341/gazimmfd.416417

Öz

Bu çalışmada, 2-(4-metoksifenilamino)2-oksoetilmetakrilat (MPAEMA) monomeri, 2-klor-N-(4-metoksifenil)asetamit ile sodyummetakrilattan sentezlendi. Monomerin yapısı FT-IR, 1H-NMR ve 13C-NMR spektroskopik teknikleri ile karakterize edildi. MPAEMA monomerinin homopolimeri ve metil metakrilat (MMA) ile kopolimerleri serbest radikalik polimerizasyon yöntemiyle hazırlandı. Poli(MPAEMA) homopolimeri ve Poli(MPAEMA-ko-MMA) kopolimeri; FT-IR, 1H-NMR ve 13C-NMR spektroskopik teknikleri, TGA/DTA termal analiz yöntemleriyle ve homoolimer jel geçirgenlik kromatografisi (GPC) karakterize edildi. MPAEMA monomerinin MMA ile değişik oranlardaki kopolimerleri aynı yöntemle %15 dönüşümle sentezlenerek serileri oluşturuldu. Düşük dönüşümlü kopolimer bileşimleri Elementel Analiz sonuçlarına göre belirlendi ve karakterizasyonu FT-IR ve TGA termal analiz ile yapıldı. Kopolimer sistemleri için monomer reaktivite oranları Fineman Ross (FR), Kelen Tüdos (KT)  lineer metotları ve RREVM nonlineer metoduyla hesaplandı ve tüm sonuçlar tartışıldı.

Kaynakça

  • İsmail O., ve Kuyulu, A., Akrilik asit esaslı süper absorban kopolimerlerin sentezi ve bahçe bitkilerine uygulanması, Yıldız Teknik Üniversitesi Dergisi, 3, 33-40, 2003.
  • Zengin H.B., Basan S., Ekberov O.H., Maleik Anhidrit–Stiren Kopolimerinin Amid ve İmid Türevlerinin Sentezi ve Isısal Davranışları, Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi, 26(2), 2005.
  • Nie L., Narayan R., Grafting cellulose acetate with styrene maleic anhydride random copolymers for improved dimensional stability of cellulose acetate, Journal of Applıed Polymer Scıence, 54, 601-607, 1994.
  • Barım G., Coşkun M., (2,3-Difenil-1,3-oksazolidin-5-il)metil metakrilat’ın metil metakrilat ile kopolimerlerinin sentezi, karakterizasyonu ve termal özellikleri, Adıyaman Üniversitesi, Fen Bilimleri Dergisi, 2(2), 75-85, 2012.
  • Soykan C., İlter Z., Alkil metakrilatların glisidilmetakrilat ile kopolimerlerinin sentezi ve karakterizasyonu, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(1-2), 103-110, 2001.
  • Nicholson J.W., Brookman P.J., Lacy O. M., Sayers G.S., Wilson A.D., A study of the nature and formation of zinc polyacrylate cement using Fourier transform infrared spectroscopy, Journal of Biomedical Materials Research, 22, 623-631, 1988.
  • Parker S., Braden M., Water absorption of methacrylate soft lining materials, Biomaterials, 10, 91-95, 1989.
  • Patel J.N., Dolia M.B., Patel K.H., Patel R.M., Homopolymer of 4-chloro-3-methyl Phenyl Methacrylate and its Copolymers with Butyl Methacrylate: Synthesis, Characterization, Reactivity Ratios and Antimicrobial Activity, Journal of Polymer Research, 13, 219-228, 2006.
  • Açıkbaş Y., Çankaya N., Capan R., Erdogan M., Soykan C., Swelling behavior of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapors by quartz crystal microbalance technique, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 53(1), 18–25, 2016.
  • Hemalatha P., Veeraiah M.K., Kumar S. P., Madegowda N.M., American M. M., Reactivity ratios of n-vinylpyrrolidone-acrylic acid copolymer, Journal of Polymer Science, 4(1), 16-23, 2014.
  • Mark H.F., Bikales N.M., Overberger C.G., Menges G., Encyclopedia of Polymer Science and Engineering, Wiley Interscience, New York, 1986.
  • Fineman M., Ross S.D., Reactivity Ratios of new vinyl monomers, J. Macromol, Sci. Chem. A9(1), 1975.
  • Kelen T.F., Tudos B. Turcsanyi, Confidence intervals for copolymerization reactivity ratios determined by the Kelen–Tudos method, Polymer. Bulletin, 2, 71–76, 1980.
  • Tudos F., Kelen T., Turcsanyi B., Kennedy J.P., Analysis of the linear methods for determining copolymerization reactivity ratios. VI. A comprehensive critical reexamination of oxonium ion copolymerizations, J. Polym. Sci. Polym. Chem. Ed. 19, 1119–1132, 1981.
  • Çankaya N., Aril gruplu metakrilat monomerinin atom transfer radikal polimerizasyonu, Türkiye Alim Kitapları, morebooks publishing, Lambert Academic Publishing, Saarbrücken-Germany, 2015.
  • Çankaya N., Demirelli, K., Atom transfer radical copolymerization of phenoxycarbonylmethyl methacrylate with methylmethacrylate: their monomer reactivity ratios and thermal stabilities, Journal of the Chemical Society of Pakistan, 33(6), 884, 2011.
  • Çankaya N., Temüz M.M., Characterization and Monomer Ratios of Grafted Cellulose with N-(4-nitrophenyl)acrylamide and Methyl Methacrylate by Atom Transfer Radical Polymerization, Cellulose Chemıstry and Technology, 46(9-10), 551-558, 2012.
  • Çankaya N., Temüz M.M., Monomer Reactivity Ratios of Grafted Cellulose with N-cyclohexylacrylamide and Methyl Methacrylate by Atom Transfer Radical Polymerization, Cellulose Chemıstry and Technology, 48(3-4), 209-215, 2014.
  • Erol I., Kolu S., Copolymers of a new methacrylate monomer bearing oxime ester and ether with methyl methacrylate: synthesis, characterization, monomer reactivity ratios, and biological activity, Journal of Applied Polymer Science., 120, 279–290, 2011.
  • Ilter Z., Soykan C., Solmaz A., Copolymers of 7-Methoxy-2-Acetyl Benzofuryl Methylmethacrylate With Styrene:Synthesis, Characterization, Reactivity Ratios and Determination of Kinetic Parameters With Thermogravimetric Analysis, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52, 175–185, 2015.
  • Nanjundan S., et al., Homopolymer of 4-benzoylphenyl Methacrylate and its Copolymers with Glycidyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios and Application as Adhesives, React. and Func. Polym. 62, 11-24, 2005.
  • Soykan C., Delibas A., Coskun R., Novel copolymers of 4-chloronaphthyl methacrylate with acrylonitrile: determination of monomer reactivity ratios and antimicrobial activity, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 46, 250-267, 2009.
  • Soykan C., Yakuphanoglu F., Sahin M. Synthesis, Antimicrobial Activity and Semi-conducting Properties of Novel 2-(4-Chloro-1-Naphtyloxy)-2-Oxoethyl Methacrylate with 2-(Diethylamino)Ethyl Methacrylate Copolymers, Journal of Macromolecular Science, Part A:Pure and Applied Chemistry, 50, 953–965, 2013.
  • Karatas F., Cansiz A., Kara H., Karatepe M., Koparir M., Synthesis of two new acetanilide derivatives and their effect on the serum antioxidant vitamins (A, E, and C) and the MDA level in rats, Russian Journal of Bioorganic Chemistry, 31(5), 499-501, 2005.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nevin Çankaya

Yayımlanma Tarihi 14 Ağustos 2018
Gönderilme Tarihi 13 Şubat 2017
Kabul Tarihi 20 Haziran 17
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Çankaya, N. (2018). Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3), 1155-1170. https://doi.org/10.17341/gazimmfd.416417
AMA Çankaya N. Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi. GUMMFD. Ağustos 2018;33(3):1155-1170. doi:10.17341/gazimmfd.416417
Chicago Çankaya, Nevin. “Metoksi Grubu içeren Metakrilat Polimerlerin Sentez, Karakterizasyon, Termal özellik Ve Reaktivite oranlarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, sy. 3 (Ağustos 2018): 1155-70. https://doi.org/10.17341/gazimmfd.416417.
EndNote Çankaya N (01 Ağustos 2018) Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 3 1155–1170.
IEEE N. Çankaya, “Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi”, GUMMFD, c. 33, sy. 3, ss. 1155–1170, 2018, doi: 10.17341/gazimmfd.416417.
ISNAD Çankaya, Nevin. “Metoksi Grubu içeren Metakrilat Polimerlerin Sentez, Karakterizasyon, Termal özellik Ve Reaktivite oranlarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/3 (Ağustos 2018), 1155-1170. https://doi.org/10.17341/gazimmfd.416417.
JAMA Çankaya N. Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi. GUMMFD. 2018;33:1155–1170.
MLA Çankaya, Nevin. “Metoksi Grubu içeren Metakrilat Polimerlerin Sentez, Karakterizasyon, Termal özellik Ve Reaktivite oranlarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2018, ss. 1155-70, doi:10.17341/gazimmfd.416417.
Vancouver Çankaya N. Metoksi grubu içeren metakrilat polimerlerin sentez, karakterizasyon, termal özellik ve reaktivite oranlarının incelenmesi. GUMMFD. 2018;33(3):1155-70.