BibTex RIS Kaynak Göster

Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu

Yıl 2019, Cilt: 34 Sayı: 2, 739 - 750, 23.05.2019
https://doi.org/10.17341/gazimmfd.416533

Öz

Zararlı etkilerinden dolayı günümüzde hegzaklorosiklohegzan (HCH, C6H6Cl6) kullanımı yasaklanmış olsa da geçmişten kalan üretim stokları hala mevcuttur. Son araştırmalar mekanokimyasal deklorinasyon prosesinin HCH’ın gideriminde umut vaat eden bir yöntem olduğunu göstermiştir. Ancak mekanokimyasal deklorinasyon prosesinin geçerli bir yöntem olabilmesi için daha fazla araştırmaya ihtiyaç duyulmaktadır. Bu amaçla mevcut çalışmada; içeriğinde çeşitli metal oksitler bulunduran uçucu kömür külü (UK) ve refrakter tuğla atığı (RT) kullanılarak hegzaklorosiklohegzan (HCH) izomerlerinin mekanokimyasal deklorinasyonu ilk defa araştırılmıştır. Mekanokimyasal deklorinasyon prosesi oda sıcaklığında gezegen hareketli bilyalı değirmende gerçekleştirilmiş ve giderim veriminin belirlenmesi amacıyla elektron yakalama dedektörlü gaz kromatografi (GC-ECD) cihazı kullanılmıştır.  Sonuçlar 1:25 (m/m) oranında HCH:UK kullanılarak 600 dk sonunda HCH izomerlerinin tamamıyla giderildiğini göstermiştir. Organik klorun suda çözünür klora dönüşüm oranı ise %52’dir. Proses sonunda bilye sıcaklıkları 105oC’ye kadar yükselmiş ve reaktif+HCH karışım sıcaklıkları da proses süresi ile birlikte sürekli olarak artmıştır. Tetraklorobenzenler (TeKBz) ve triklorobenzenler (TKBz) ise deklorinasyon sırasında tespit edilen izomerlerdir. Çalışma sonuçlarına göre HCH izomerlerinin mekanokimyasal deklorinasyonu, termal arıtma ve biotik parçalama uygulamalarına alternatif çevre dostu bir teknolojidir.   

Kaynakça

  • Breivik, K., Pacyna, J.M., Munch, J., Use of α-, β-, γ- hexachlorocyclohexane in Europe, 1970–1996, Science of the Total Environment, 239, 151–163, 1999.
  • Li, Y.F., Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948-1997, Science of The Total Environment, 232, 121-158, 1999.
  • Metcalf, R. L., The Mode of Action of Organic Insecticides, National Research Council, Washington D.C., ABD, 1948.
  • Matolcsy, G., Nadasy, M., Andriska, V., Studies in Environmental Science 32: Pesticide Chemistry, Elsevier Science, New York, ABD, 1988.
  • Willet, K.L., Utrich, E.M., Hites, R.A., Differential toxicity and environmental facts of hexachlorocyclohexane isomers, Environmental Science & Technology, 32, 2197–2207, 1998.
  • Hauzenberger, I., Reports on Substances Scheduled for Re-Assessments under the UNECE POPs Protocol, Technical Review Report on Lindane, Federal Environment Agency, Avusturya, 2004.
  • UNEP, Report of the Conference of the parties of the Stockholm convention on persistent organic pollutants on the work of its fourth meeting. In: Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants Fourth Meeting, Secretariat of the Stockholm Convention, Geneva, İsviçre, 2009.
  • OSPAR, 2006. Commission Protecting and conserving the North-East Atlantic and its resources. http://www.ospar.org/convention. Erişim tarihi Ağustos 11, 2016.
  • Jit, S., Dadhwal, M., Kumari, H., Jindal, S., et al., Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India, Environmental Science Pollution Research, 18 , 586-597, 2011.
  • POPRC, Draft Risk Profile for Beta-Hexachlorocyclohexane. Secretariat of the Stockholm Convention POPs Review Committee, 31, Geneva, İsviçre, 2007.
  • Vijgen, J., The legacy of lindane HCH isomer production: A global overview of residue management, formulation and disposal. International HCH and Pesticides Association, 26, Denmark, 2006.
  • Jürgens, H.J., Roth, R., Case Study and Proposed Decontamination Steps of the Soil and Groundwater Beneath a Closed Herbicide Plant in Germany, Chemosphere, 18, 1163-1169, 1989.
  • Olie, K., Coenraads, P.J., Tang, N.J., Luksemburg, W.J., Wong, A. S., Occupational Contamination with PCDD/F’s During Recycling of Non-Gamma HCH in a Chinese Chemical Factory. Part IV Comparison of Samples in and Outside the Factory with Isomer and Congener Patterns, 22nd International Symposium on Halogenated Environmental Organic Pollutants and POPs, Barselona-İspanya, 56, 11-16 Ağustos, 2002.
  • Tange, L., Drohmann, D., Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment-thermal process, Polymer Degradation and Stability, 88, 35-40, 2005.
  • Tomio, S., Masamitsa, T., Development of Fluidized Bed Gasification and Swirl-flow Melting Process for Municipal Solid Wastes, The University of Seoul Press, Seul, Kore, 2002.
  • Ecke, H., Sakanakura, H., Matsuto, T., State-of-the-art treatment processes for municipal solid incineration residues in Japan. Waste Management & Research, 18, 41-51, 2000.
  • Hagenmaier, H., Kraft, M., Brunner, H., Catalytic effects of fly ash from incineration facilities on the formation and decomposition of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans, Environmental Science & Technology, 21, 1080-1084, 1987.
  • Zinoviev, S., Fornasiero, P., Lodolo, A., Miertus, S., Non-combustion technologies for POPs destruction. Review and evaluation, International Centre for Science and Hich Technology of the United Nations Industrial Development Organisation (ICS-UNIDO), Trieste, İtalya, 2007.
  • Tiernan, T.O., Wagel, D.J., VanNess, G.F., Treatment of complex chemical wastes with the base catalyzed decomposition (BCD) process, Organohalogen Compounds, 8, 289-292, 1992.
  • Shi, W., Zhang, J., Photodegradation mechanism and its influential factors of PVC, China Synthetic Resin and Plastics, 23, 80-84, 2006.
  • Zhang, T., Cheng, X.X., Progress of the research on persistent organic pollutants, Sci-Tech Information Development & Economy, 17, 206-208, 2007.
  • Heinicke, G., Tribochemistry. Akademic-Verlag, Berlin, Almanya, 1984.
  • Wei, Y., Yan, J., Lu, S., Li, X., Mechanochemical decomposition of pentachlorophenol by ball milling, Journal of Environmental Sciences, 21, 1761–1768, 2009.
  • Rowlands, S.A., Hall, A.K., Mccormick, P.G., Street, R., Hart, R. J., Ebell, G.F., Donecker, P., Destruction of toxic materials, Nature, 367, 223, 1993.
  • Kaupp, G., Mechanochemistry: the varied applications of mechanical bond-breaking, CrysEngCommun, 11 388-403, 2009.
  • Cagnetta, G., Huang, J., Lu, M., Wang, B., Wang, Y., Deng, S., Yu, G., Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants, Chemosphere, 184, 879-883, 2017.
  • Yin, K., Gao, X., Sun, Y., Zheng, L., Wang, W., Thermal degradation of hexachlorobenzene in the presence of calcium oxide at 340-400 oC, Chemosphere, 93, 1600-1606, 2013.
  • Yu, Y., Huang, J., Zhang, W., Zhang, K., Deng, S., Yu, G., Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill, Chemosphere, 90, 1729-1735, 2013.
  • Delogu, F., Mechanochemical Behavior of Surface Radicals in Ground Quartz. The Journal of Physical Chemistry C, 115, 21230-21235, 2011.
  • Tanaka, Y., Zhang, Q., Saito, F., Mechanochemical Decomposition of an Aromatic Polyamide Film, Industrial & Engineering Chemistry Research, 42, 5018-5023, 2003.
  • Zhang, W., Wang, H., Huang, J., Yu, M., et al., Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand, Chemical Engineering Journal, 239, 185-191, 2014.
  • Leo, P.D., Pizzigallo, M.D.R., Ancona, V., Benedetto, F.D., et al., Mechanochemical degradation of pentachlorophenol onto birnessite, Journal of Hazardous Materials, 244-245, 303-310, 2013.
  • Xu, Z., Zhang, X., Fei, Q., Dechlorination of pentachlorophenol by grinding at low rotation speed in short time, Energy, Resources and Environmental Technology, 23, 578-582, 2015.
  • Ren, Y., Kang, S., Zhu, J., Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive, Journal of Material Cycles and Waste Management, 17, 607-615, 2015.
  • Cagnetta, G., Robertson, J., Huang, J., Zhang, K., Yu, G., Mechanochemical destruction of halogenated organic pollutants: A critical review, Journal of Hazardous Materials, 313, 85-102, 2016.
  • Wang, H., Huang, J., Zhang, K., Yu, Y., Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill, Journal of Hazardous Materials, 264, 230-235, 2014.
  • Nasser, A., Mingelgrin, U., Birnessite-induced mechanochemical degradation of 2,4-dichlorophenol, Chemosphere, 107, 175-179, 2014.
  • Figueroa, I.D.C., Simmons, P.G., Structure-activity relationships of chlorobenzenes using DNA measurement as a toxicity parameter in algae, Environmental Toxicology and Chemistry, 10, 323-329, 1991.
  • Ghaffar, A., Tabata, M., Mashiatullah, A., Two-Phase Dechlorination/Detoxification of Lindane (Hexachlorocyclohexane), Advances in Environmental Chemistry, 792680, 1-7, 2014.
  • Nomura, Y., Fujiwara, K., Terada, A., Nakai, S., Hosomi, M., Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO, Chemosphere, 86 (3), 228-234, 2012.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Volkan Pelitli

Uğur Kurt

Oltan Canlı

Yayımlanma Tarihi 23 Mayıs 2019
Gönderilme Tarihi 3 Kasım 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 2

Kaynak Göster

APA Pelitli, V., Kurt, U., & Canlı, O. (2019). Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 739-750. https://doi.org/10.17341/gazimmfd.416533
AMA Pelitli V, Kurt U, Canlı O. Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu. GUMMFD. Mayıs 2019;34(2):739-750. doi:10.17341/gazimmfd.416533
Chicago Pelitli, Volkan, Uğur Kurt, ve Oltan Canlı. “Hegzaklorosiklohegzan Izomerlerinin Metal Oksit varlığında Gezegen Hareketli Bilyalı değirmen kullanılarak Mekanokimyasal Deklorinasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 2 (Mayıs 2019): 739-50. https://doi.org/10.17341/gazimmfd.416533.
EndNote Pelitli V, Kurt U, Canlı O (01 Mayıs 2019) Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 2 739–750.
IEEE V. Pelitli, U. Kurt, ve O. Canlı, “Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu”, GUMMFD, c. 34, sy. 2, ss. 739–750, 2019, doi: 10.17341/gazimmfd.416533.
ISNAD Pelitli, Volkan vd. “Hegzaklorosiklohegzan Izomerlerinin Metal Oksit varlığında Gezegen Hareketli Bilyalı değirmen kullanılarak Mekanokimyasal Deklorinasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/2 (Mayıs 2019), 739-750. https://doi.org/10.17341/gazimmfd.416533.
JAMA Pelitli V, Kurt U, Canlı O. Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu. GUMMFD. 2019;34:739–750.
MLA Pelitli, Volkan vd. “Hegzaklorosiklohegzan Izomerlerinin Metal Oksit varlığında Gezegen Hareketli Bilyalı değirmen kullanılarak Mekanokimyasal Deklorinasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 2, 2019, ss. 739-50, doi:10.17341/gazimmfd.416533.
Vancouver Pelitli V, Kurt U, Canlı O. Hegzaklorosiklohegzan izomerlerinin metal oksit varlığında gezegen hareketli bilyalı değirmen kullanılarak mekanokimyasal deklorinasyonu. GUMMFD. 2019;34(2):739-50.