Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of mechanical properties of electroless nickel plated micro-lattice structures

Yıl 2020, Cilt: 35 Sayı: 4, 1783 - 1798, 21.07.2020
https://doi.org/10.17341/gazimmfd.586438

Öz



In this study, mechanical properties of electroless nickel coated micro
lattice structures were parametrically studied with both experimental and
finite element methods. The micro lattice structures are produced of micro
struts with a diameter of approximately 200 µm by selective laser melting (SLM)
and are made of 316L stainless steel in the form of body centered cubic (BCC)
structure. With electroless nickel coating method, a coating thickness of 17 µm
was obtained and as a result, compression tests showed a 50% increase in
specific elasticity modules and a 75% increase in specific strength for micro
lattice structures. The effects of coating thickness and cell size on the
mechanical performance of micro lattice structures were investigated by finite
element method. Material parameters required for finite element method were
obtained by using nano-indentation tests on the coating and inverse finite
element algorithms. Studies showed that; The mechanical and failure properties
of the coating material have a significant effect on improving the mechanical
properties of the coated micro lattices. As a result, it was determined that,
with higher the specific strength and ductility of the coating material, higher
mechanical properties of the stainless-steel micro lattice structures can be
achieved.




Kaynakça

  • Xiong J., Mines R., Ghosh R., Vaziri A., Ma L., Ohrndorf A., ... & Wu L., Advanced micro‐lattice materials, Adv. Eng. Mater., 17(9), 1253-1264, 2015.
  • Rashed M. G., Ashraf M., Mines R. A. W., Hazell P. J., Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95, 518-533, 2016.
  • Ushijima K., Cantwell W. J., Mines R. A. W., Tsopanos S., Smith M., An investigation into the compressive properties of stainless steel micro-lattice structures, Journal of Sandwich Structures & Materials, 13(3), 303-329, 2011.
  • Gümrük R., & Mines R. A. W., Compressive behaviour of stainless steel micro-lattice structures, International Journal of Mechanical Sciences, 68, 125-139, 2013.
  • Gümrük R., Mines R. A. W., & Karadeniz S., Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions, Mater. Sci. Eng. A, 586, 392-406. 2013.
  • Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J. A., Fay S. D., Goodall R., ... Askes H., Energy absorption in lattice structures in dynamics: Experiments, International Journal of Impact Engineering, 89, 49-61, 2016.
  • Schaedler T. A., Jacobsen A. J., Torrents A., Sorensen A. E., Lian J., Greer J. R., ... Carter W. B., Ultralight metallic microlattices, Science, 334(6058), 962-965, 2011.
  • Schaedler T. A., Ro C. J., Sorensen A. E., Eckel Z., Yang S. S., Carter W. B., Jacobse A. J., Designing metallic microlattices for energy absorber applications, Adv. Eng. Mater., 16(3), 276-283, 2014.
  • Bouwhuis B. A., Ronis T., McCrea J. L., Palumbo G., Hibbard G. D., Structural nanocrystalline Ni coatings on periodic cellular steel, Composites Science and Technology, 69(3-4), 385-390, 2009.
  • Sudagar J., Lian J., Sha W., Electroless nickel, alloy, composite and nano coatings–A critical review, J. Alloys Compd., 571, 183-204, 2013.
  • Oliver W. C., Pharr G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(6), 1564-1583, 1992.
  • Liu R., Li X., Wang H., Ding G., Yang C., Yang Z., A new method for the micro-tensile testing of thin film. In Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on. IEEE, 112-115, January 2008.
  • Read D. T., Dally J. W., A new method for measuring the strength and ductility of thin films, J. Mater. Res., 8(7), 1542-1549, 1993.
  • Dehm G., Wörgötter H. P., Cazottes S., Purswani J. M., Gall D., Mitterer C., Kiener, D., Can micro-compression testing provide stress–strain data for thin films?: A comparative study using Cu, VN, TiN and W coatings, Thin Solid Films, 518(5), 1517-1521, 2009.
  • Jeong H. J., Lim N. S., Lee B. H., Park C. G., Lee S., Kang S. H., Lee H. W., Kim H. S., Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method, Metall. Mater. Trans. A, 45(13), 6008–6015, 2014.
  • Bouzakis, K. D., Michailidis, N., An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation, Mater. Charact., 56(2), 147-157, 2006.
  • Li Y., Stevens P., Sun M., Zhang C., Wang, W., Improvement of predicting mechanical properties from spherical indentation test, International Journal of Mechanical Sciences, 117, 182-196, 2016.
  • De Bono D. M., Inverse Analysis and Microstructure Effects in Nanoindentation Testing, Doktora Tezi, University of Surrey, United Kingdom, 2017.
  • Tsopanos S., Mines R. A. W., McKown S., Shen Y., Cantwell W. J., Brooks W., Sutcliffe C. J., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, Journal of Manufacturing Science and Engineering, 132(4), 041011, 2010.
  • Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, 45(24), 6018-6033, 2008.
  • De Bono D. M., London T., Baker M., Whiting M. J., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, International Journal of Mechanical Sciences, 123, 162–176, 2017.
  • Gümrük R., Uşun A., Mines R., Enhancement of the Mechanical Performance of Stainless-Steel Micro Lattice Structures Using Electroless Plated Nickel Coatings, Proceedings, Vol. 2, No. 8, p. 494, 2018.

Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi

Yıl 2020, Cilt: 35 Sayı: 4, 1783 - 1798, 21.07.2020
https://doi.org/10.17341/gazimmfd.586438

Öz

Bu çalışmada, akımsız
nikel ile kaplanan mikro kafes yapıların mekanik özellikleri hem deneysel hem
de sonlu elemanlar yöntemi kullanılarak parametrik olarak çalışılmıştır.
Kullanılan mikro kafes yapılar seçici lazer ergitme (SLM) yöntemi ile yaklaşık
200µm çapında mikro tellerden oluşmakta olup, 316L paslanmaz çelik malzemeden
hacim merkezli kübik (BCC) yapı şeklinde üretilmiştir. Uygulanan akımsız nikel
kaplama yöntemi ile yaklaşık olarak 17 µm kaplama kalınlığı elde edilmiş ve
bunun sonucunda gerçekleştirilen basma testleri sonucunda mikro kafes yapıların
spesifik elastisite modüllerinde yaklaşık %50 ve spesifik mukavemetlerinde ise %75
artış elde edilmiştir. Kaplama kalınlığının ve hücre boyutu arasındaki ilişkilerin
mikro kafes yapıların mekanik performansları üzerine etkileri sonlu elemanlar
analizleri ile parametrik çalışmalar ile incelenmiştir. Sonlu elemanlar
yönteminde malzeme modelleri için gerekli malzeme parametreleri kaplama için nano-indentasyon
testler kullanılarak ve özgün olarak geliştirilen tersine sonlu elemanlar
algoritması ile elde edilmiştir. Yapılan çalışmalar gösterdi ki; kaplama
malzemesinin mekanik ve hasar özelliklerinin kaplanmış mikro kafeslerin mekanik
özelliklerinin iyileştirilmesinde çok ciddi bir etkiye sahiptir. Sonuç olarak
kaplama malzemesinin spesifik mukavemeti ve sünekliği ne kadar yüksek ise
paslanmaz çelik mikro kafes yapıların spesifik mekanik özelliklerinin o
derecede iyileşme göstereceği belirlenmiştir.




Kaynakça

  • Xiong J., Mines R., Ghosh R., Vaziri A., Ma L., Ohrndorf A., ... & Wu L., Advanced micro‐lattice materials, Adv. Eng. Mater., 17(9), 1253-1264, 2015.
  • Rashed M. G., Ashraf M., Mines R. A. W., Hazell P. J., Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95, 518-533, 2016.
  • Ushijima K., Cantwell W. J., Mines R. A. W., Tsopanos S., Smith M., An investigation into the compressive properties of stainless steel micro-lattice structures, Journal of Sandwich Structures & Materials, 13(3), 303-329, 2011.
  • Gümrük R., & Mines R. A. W., Compressive behaviour of stainless steel micro-lattice structures, International Journal of Mechanical Sciences, 68, 125-139, 2013.
  • Gümrük R., Mines R. A. W., & Karadeniz S., Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions, Mater. Sci. Eng. A, 586, 392-406. 2013.
  • Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J. A., Fay S. D., Goodall R., ... Askes H., Energy absorption in lattice structures in dynamics: Experiments, International Journal of Impact Engineering, 89, 49-61, 2016.
  • Schaedler T. A., Jacobsen A. J., Torrents A., Sorensen A. E., Lian J., Greer J. R., ... Carter W. B., Ultralight metallic microlattices, Science, 334(6058), 962-965, 2011.
  • Schaedler T. A., Ro C. J., Sorensen A. E., Eckel Z., Yang S. S., Carter W. B., Jacobse A. J., Designing metallic microlattices for energy absorber applications, Adv. Eng. Mater., 16(3), 276-283, 2014.
  • Bouwhuis B. A., Ronis T., McCrea J. L., Palumbo G., Hibbard G. D., Structural nanocrystalline Ni coatings on periodic cellular steel, Composites Science and Technology, 69(3-4), 385-390, 2009.
  • Sudagar J., Lian J., Sha W., Electroless nickel, alloy, composite and nano coatings–A critical review, J. Alloys Compd., 571, 183-204, 2013.
  • Oliver W. C., Pharr G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(6), 1564-1583, 1992.
  • Liu R., Li X., Wang H., Ding G., Yang C., Yang Z., A new method for the micro-tensile testing of thin film. In Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on. IEEE, 112-115, January 2008.
  • Read D. T., Dally J. W., A new method for measuring the strength and ductility of thin films, J. Mater. Res., 8(7), 1542-1549, 1993.
  • Dehm G., Wörgötter H. P., Cazottes S., Purswani J. M., Gall D., Mitterer C., Kiener, D., Can micro-compression testing provide stress–strain data for thin films?: A comparative study using Cu, VN, TiN and W coatings, Thin Solid Films, 518(5), 1517-1521, 2009.
  • Jeong H. J., Lim N. S., Lee B. H., Park C. G., Lee S., Kang S. H., Lee H. W., Kim H. S., Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method, Metall. Mater. Trans. A, 45(13), 6008–6015, 2014.
  • Bouzakis, K. D., Michailidis, N., An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation, Mater. Charact., 56(2), 147-157, 2006.
  • Li Y., Stevens P., Sun M., Zhang C., Wang, W., Improvement of predicting mechanical properties from spherical indentation test, International Journal of Mechanical Sciences, 117, 182-196, 2016.
  • De Bono D. M., Inverse Analysis and Microstructure Effects in Nanoindentation Testing, Doktora Tezi, University of Surrey, United Kingdom, 2017.
  • Tsopanos S., Mines R. A. W., McKown S., Shen Y., Cantwell W. J., Brooks W., Sutcliffe C. J., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, Journal of Manufacturing Science and Engineering, 132(4), 041011, 2010.
  • Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, 45(24), 6018-6033, 2008.
  • De Bono D. M., London T., Baker M., Whiting M. J., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, International Journal of Mechanical Sciences, 123, 162–176, 2017.
  • Gümrük R., Uşun A., Mines R., Enhancement of the Mechanical Performance of Stainless-Steel Micro Lattice Structures Using Electroless Plated Nickel Coatings, Proceedings, Vol. 2, No. 8, p. 494, 2018.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Recep Gümrük 0000-0002-1447-523X

Altuğ Uşun 0000-0003-0773-9548

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 3 Temmuz 2019
Kabul Tarihi 29 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 4

Kaynak Göster

APA Gümrük, R., & Uşun, A. (2020). Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1783-1798. https://doi.org/10.17341/gazimmfd.586438
AMA Gümrük R, Uşun A. Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. GUMMFD. Temmuz 2020;35(4):1783-1798. doi:10.17341/gazimmfd.586438
Chicago Gümrük, Recep, ve Altuğ Uşun. “Akımsız Nikel kaplanmış Mikro Kafes yapıların Mekanik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 1783-98. https://doi.org/10.17341/gazimmfd.586438.
EndNote Gümrük R, Uşun A (01 Temmuz 2020) Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 1783–1798.
IEEE R. Gümrük ve A. Uşun, “Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi”, GUMMFD, c. 35, sy. 4, ss. 1783–1798, 2020, doi: 10.17341/gazimmfd.586438.
ISNAD Gümrük, Recep - Uşun, Altuğ. “Akımsız Nikel kaplanmış Mikro Kafes yapıların Mekanik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 1783-1798. https://doi.org/10.17341/gazimmfd.586438.
JAMA Gümrük R, Uşun A. Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. GUMMFD. 2020;35:1783–1798.
MLA Gümrük, Recep ve Altuğ Uşun. “Akımsız Nikel kaplanmış Mikro Kafes yapıların Mekanik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 1783-98, doi:10.17341/gazimmfd.586438.
Vancouver Gümrük R, Uşun A. Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. GUMMFD. 2020;35(4):1783-98.