Fonksiyonel derecelendirilmiş tüplerin enerji sönümleme davranışlarının sayısal incelenmesi
Yıl 2020,
Cilt: 35 Sayı: 4, 1939 - 1956, 21.07.2020
Dursun Meriç
,
Hasan Gedikli
Öz
Bu çalışmada; alüminyum alaşımıAA6063’ den yapılmış farklı koniklik açısı (0°, 5° ve 10°) ve eksenel doğrultuda farklı kalınlığa (0,5 mm - 4 mm) sahip bölgelerden oluşmuş fonksiyonel derecelendirilmiş tüplerin (FDT) enerji sönümleme davranışları sayısal olarak incelenmiştir. Analizler sonucunda tüplerin deformasyon şekilleri, kuvvet-yer değiştirme ve enerji-zaman grafikleri elde edilmiştir. Farklı koniklik açıları için en düşük pik kuvvet ve en yüksek özgül enerji sönümleme (ÖES) değerlerini sağlayan optimum bölge kalınlıkları, İleri Beslemeli Yapay Sinir Ağları (İBYSA) tekniğini içeren optimizasyon yöntemi ile belirlenmiştir. Optimizasyon sonucunda elde edilen katman kalınlıkları fonksiyonel derecelendirilmiş tüpün enerji sönümleme davranışını iyileştirdiği görülmüştür.
Kaynakça
- 1. Wlodzimierz Abramowicz, Norman Jones, Dynamic axial crushing of circular tubes, International Journal of Impact Engineering, 2, (3), 1984.
2. S. Salehghaffari, M. Tajdari, M. Panahi, F. Mokhtarnezhad,Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading,Thin-Walled Structures,48, (6), 2010.
3. Bin Xu, Cheng Wang, Wenlong Xu, An efficient energy absorber based on fourfold-tube nested circular tube system, Thin-Walled Structures, 137, 2019.
4. Xiong Zhang, Zhuzhu Wen, Hui Zhang, Axial crushing and optimal design of square tubes with graded thickness, Thin-Walled Structures, 84, 2014.
5. Christopher P. Kohar, Mohsen Mohammadi, Raja K. Mishra, Kaan Inal, Effects of elastic–plastic behaviour on the axial crush response of square tubes, Thin-Walled Structures, 93, 2015.
6. Xiong Zhang, Hui Zhang, Weijie Ren, Axial crushing of tubes fabricated by metal sheet bending, Thin-Walled Structures, 122, 2018.
7. Caihua Zhou, Yan Zhou, Bo Wang, Crashworthiness design for trapezoid origami crash boxes, Thin-Walled Structures, 117, 2017.
8. Caihua Zhou, Shizhao Ming, Chaoxiang Xia, Bo Wang, Xiangjun Bi, Peng Hao, Mingfa Ren, The energy absorption of rectangular and slotted windowed tubes under axial crushing, International Journal of Mechanical Sciences, 141, 2018.
9. Kai Yang, Shanqing Xu, Shiwei Zhou, Yi Min Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption, Thin-Walled Structures, 123, 2018.
10. Isabel Duarte, Lovre Krstulović-Opara, João Dias-de-Oliveira, Matej Vesenjak, Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes, Thin-Walled Structures, 138, 2019.
11. Arameh Eyvazian, Meisam K. Habibi, Abdel Magid Hamouda, Reza Hedayati, Axial crushing behavior and energy absorption efficiency of corrugated tubes, Materials & Design 1980, 54, 2014.
12. Arameh Eyvazian, Meisam K. Habibi, Abdel Magid Hamouda, Reza Hedayati, Axial crushing behavior and energy absorption efficiency of corrugated tubes, Materials & Design (1980-2015), 54, 1028-1038, 2014.
13. M. Kamal, M. Shah, Noorhifiantylaily Ahmed, O. Irma Wani, J. Sahari; Study Of Crasworthiness Behaviour Of Thin Walled Tube under Axial Loading by Using Computational Mechanics; International Journal of Materials and Mettallurgical Engineering 10 (8), 1170-1175, 2016.
14. S.S.Hsu,N.Jones,Quasi-staticanddynamicaxialcrushingofthin-walled circular stainless steel,mild steel and aluminium alloy tubes, Int.J.Crash-worthiness 9(2), 195–217, 2004.
15. Z.Fan, G.Lu, K.Liu, Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Engineering Structures. 55, 80-89, 2013.
16. Niyazi Tanlak, Fazil O. Sonmez, Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Structures 84, 302–312, 2014.
17. Wangyu Liu, Zhenqiong Lin, Ningling Wang, Xiaolin Deng; Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact. Thin-Walled Structures 100, 25–37, 2016.
18. Javad Marzbanrad, Mehdi Mehdıkhanlo , Ashkan Saeedı Pour, An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading. Turkish J. Eng. Env. Sci. 33 , 159 – 166, 2009.
19. Mehmet A. Gulera, Muhammed E. Cerita, Bertan Bayramb, Bora Gerc¸eker and Emrah Karakaya. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. International Journal of Crashworthiness,. 15(4), 377–390, 2010.
20. Z.Ahmad, D.P.Thambiratnam, Crushing response of foam-filled conical tubes under quasi-static axial loading. Materials and Design 30, 2393–2403, 2009.
21. Zhibin Li, Jilin Yu, Liuwei Guo. Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading. International Journal of Mechanical Sciences, 54, 48–56, 2012.
22. Chun-ji ZHANG, Yi FENG, Xue-bin ZHANG. Mechanical properties and energy absorption properties of aluminum foam-filled square tubes. Trans. Nonferrous Met. Soc. China 20, 1380−1386, 2010.
23. Xiong Zhang, Hoon Huh, Energy absorption of longitudinally grooved square tubes under axial compression. Thin-Walled Structures 47, 1469–1477, 2009.
24. Abolfazl Darvizeh, Ata Meshkinzar, Majid Alitavoli, Reza Rajabiehfard. Low velocity impact of empty and foam filled circumferentially grooved thick-walled circular tubes. Thin–Walled Structures 110, 97–105, 2017.
25. Kai Yang, Shanqing Xu, Shiwei Zhou Yi MinXiea. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin-Walled Structures 123, 100–113, 2018.
26. Wen Shen, Xianguang Gua, Ping Jiang, Jinfang Hu, Xiaojiang Lv, Lijun Qian. Crushing analysis and multiobjective optimization design for rectangular unequal triple-cell tubes subjected to axial loading Thin-Walled Structures 117, 190–198191, 2017.
27. Xiong Zhang Hui Zhang, Zong Wang, Bending collapse of square tubes with variable thickness. International Journal of Mechanical Sciences 106, 107–116, 2016.
28. Muhammed Emin Erdin, Cengiz Baykasoglu, Merve Tunay Cetin. Quasi-static Axial Crushing Behavior of Thin-walled Circular Aluminum Tubes with Functionally Graded Thickness. Procedia Engineering 149, 559 – 565, 2016 .
29. Sharad Rawat, Anirudh Narayanan, Theerthana Nagendiran, A.K.Upadhyay. Collapse Behavior and Energy Absorption in Elliptical Tubes with Functionally Graded Corrugation. Procedia Engineering 173, 1374 –1381, 2017.
30. Yong zhang, Minghao Lua, Guangyong Sun, Guangyao Li, Qing Li. On functionally graded composite structures for crashworthiness. Composite Structures 132, 393–405, 2015.
31. Xiuzhe An, Yunkai Gao, Jianguang Fanga, Guangyong Sun, Qing Li. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-Walled Structures 91, 63–71, 2015.
32. Yafeng Chen, Zhonghao Bai, Linwei Zhang, Yulong Wang, Guangyong Sun, Libo Cao. Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles. Thin–Walled Structures 110, 133–139, 2017.
33. Nader Jafarian, Mohammad JavadRezvani. Crushing behavior of multi-component conical tubes as energy absorber: A comparative analysis between end-capped and non-capped conical tubes. Engineering Structures 178, 128–135, 2019.
34. Xiong Zhang, Hui Zhang, ZongWang. Bending collapse of square tubes with variable thickness. International Journal of Mechanical Sciences 106, 107–116, 2016.
35. M.S. Attia, S.A. Meguid, H. Nouraei, Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns, Finite Elements in Analysis and Design, 61 50-59, 2012.
36. H.R. Zarei, M. Kröger, Crashworthiness optimization of empty and filled aluminum crash boxes, International Journal of Crashworthiness, 12, 255-264, 2007.
37. E. Acar, M.A. Guler, B. Gerçeker, M.E. Cerit, B. Bayram, Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations, Thin-Walled Structures, 49, 94-105, 2011.
38. Ls-Opt User’s manual, LSTC; 2010.
39. Meriç D.,Farklı Malzemelerden Yapılmış Tüplerin Statik Ve Dinamik Yükler Altında Enerji Sönümleme Karakteristiklerinin Deneysel Ve Sayısal Olarak Belirlenmesi (Master), Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2014.
40. Meric D., Gedikli H., Energy absorption behavior of tailor-welded tapered tubes under axial impact loading using coupled FEM/SPH method, Thin-Walled Structures, 104, 17-33, 2016.