Araştırma Makalesi
BibTex RIS Kaynak Göster

FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı

Yıl 2021, Cilt: 36 Sayı: 2, 715 - 726, 05.03.2021
https://doi.org/10.17341/gazimmfd.757131

Öz

Mekânsal analizler günümüzde önemli hale gelmiştir ve çok farklı uygulama alanlarında kullanılmaktadır. Yaygın olarak kullanılan konum temelli analiz yöntemlerinden biri olan Coğrafi Ağırlıklı Regresyon (Geographically Weighted Regression-GWR) coğrafya üzerindeki değişen ilişkileri modellemek için kullanılan bir yerel mekânsal regresyon tekniğidir. Coğrafi ve Zamansal Ağırlıklı Regresyon (Geographically and Temporal Weighted Regression-GTWR) ise GWR yaklaşımının verideki zamansal ilişkileri gözönüne almasıyla geliştirilen bir yaklaşımdır.Veri kümesinde mekân-zamansal heterojenliğin olduğu durumlarda GTWR yaklaşımı GWR yaklaşımına göre daha iyi modeller üretmesine rağmen mekân-zamansal modellerin karmaşıklığı göz önüne alındığında algoritma zaman karmaşıklığı artmaktadır. Bu nedenle, literatürde koşturulan GTWR modelleri sınırlı sayıdaki veri üzerinde çalışabilmiştir. Bu çalışmada GTWR’nin algoritmasının hızını arttırmak ve dolayısı ile veri boyutu kısıtlamasının üstesinden gelmek için hızlı bir GTWR yaklaşımı olan FastGTWR modeli önerilmiştir. Önerilen FastGTWR yaklaşımının performansı gerçek veriler kullanılarak klasik GWR ve GTWR yaklaşımlarının performanslarıyla karşılaştırılmıştır. Deneysel sonuçlar önerilen FastGTWR yaklaşımının GWR ve GTWR yaklaşımlarına göre daha hızlı çalıştığını ortaya koymuştur.

Teşekkür

Meteoroloji Genel Müdürlüğü'ne verileri bizimle paylaştığı için teşekkür ederiz.

Kaynakça

  • Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., Sensing as a service model for smart cities supported by internet of things, Transactions on Emerging Telecommunications Technologies, 25(1), 81-93, 2014.
  • Prasad, A. V., Exploring the convergence of big data and the Internet of Things, IGI Global, 2017.
  • Fotheringham, A. S., Brunsdon, C. ve Charlton, M., Geographically weighted regression: the analysis of spatially varying relationships, John Wiley & Sons, 2003.
  • Huang, B., Wu, B., Barry, M., Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices, International Journal of Geographical Information Science, 24(3), 383-401, 2010.
  • Fotheringham, A. S., Crespo, R., Yao, J., Geographical and temporal weighted regression (GTWR), Geographical Analysis, 47(4), 431-452, 2015.
  • Ma, X., Zhang, J., Ding, C., Wang, Y., A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership, Computers, Environment and Urban Systems, 70, 113-124, 2018.
  • Li, Z., Fotheringham, A. S., Li, W., Oshan, T., Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations, International Journal of Geographical Information Science, 33(1), 155-175, 2019.
  • Tasyurek, M., Celik, M., RNN-GWR: A geographically weighted regression approach for frequently updated data, Neurocomputing, 399, 258-270, 2020.
  • Li, Z., Fotheringham, A. S., Computational improvements to multi-scale geographically weighted regression, International Journal of Geographical Information Science, 1-20, 2020.
  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., Fotheringham, A. S., mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269, 2019.
  • Guo, Y., Tang, Q., Gong, D. Y., Zhang, Z., Estimating ground-level PM2. 5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model, Remote Sensing of Environment, 198, 140-149, 2017.
  • He, Q., Huang, B., Satellite-based high-resolution PM2. 5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model, Environmental Pollution, 236, 1027-1037, 2018.
  • Lu, B., Brunsdon, C., Charlton, M., Harris, P., Geographically weighted regression with parameter-specific distance metrics, International Journal of Geographical Information Science, 31(5), 982-998, 2017.
  • Lu, B., Yang, W., Ge, Y., Harris, P., Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths, Computers, Environment and Urban Systems, 71, 41-57, 2018.
  • Fotheringham, A. S., Yang, W., Kang, W., Multiscale geographically weighted regression (MGWR), Annals of the American Association of Geographers, 107(6), 1247-1265, 2017.
  • Gollini, I., Lu, B., Charlton, M., Brunsdon, C., Harris, P., GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models, arXiv preprint arXiv:1306.0413, 2013.
  • Guo, L., Ma, Z., Zhang, L., Comparison of bandwidth selection in application of geographically weighted regression: a case study, Canadian Journal of Forest Research, 38(9), 2526-2534, 2008.
  • Lu, B., Charlton, M., Brunsdon, C., Harris, P., The Minkowski approach for choosing the distance metric in geographically weighted regression, International Journal of Geographical Information Science, 30(2), 351-368, 2016.
  • Da Silva, A. R. , De Oliveira Lima, A., Geographically weighted beta regression, Spatial Statistics, 21, 279-303, 2017.
  • Leong, Y. Y., Yue, J. C., A modification to geographically weighted regression, International Journal of Health Geographics, 16(1), 11, 2017.
  • Zou, B., Pu, Q., Bilal, M., Weng, Q., Zhai, L., Nichol, J. E., High-resolution satellite mapping of fine particulates based on geographically weighted regression, IEEE Geoscience and Remote Sensing Letters, 13(4), 495-499, 2016.
  • Fotheringham, A. S., Oshan, T. M., Geographically weighted regression and multicollinearity: dispelling the myth, Journal of Geographical Systems, 18(4), 303-329, 2016.
  • Chu, H. J., Kong, S. J., Chang, C. H., Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression, International Journal of Applied Earth Observation And Geoinformation, 65, 1-11, 2018.
  • Harris, R., Singleton, A., Grose, D., Brunsdon, C., Longley, P., Grid enabling geographically weighted regression: a case study of participation in higher education in England, Transactions in GIS, 14(1), 43-61, 2010.
  • Tran, H. T., Nguyen, H. T., Tran, V. T., Large-scale geographically weighted regression on Spark, In 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), IEEE, 127-132, 2016.
  • Pozdnoukhov, A., Kaiser, C., Scalable local regression for spatial analytics, In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 361-364, 2011.
  • Novo, O., Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5(2), 1184-1195, 2018.
  • Stergiou, C., Psannis, K. E., Kim, B. G., Gupta, B., Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964-975, 2018.
  • Yıldırım, G., Tatar, Y., Uzak kullanıcı destekli bir IoT-WSN sanal laboratuvarı ve test platformu: FıratWSN, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4), 1831-1846, 2019.
  • Hadayeghi, A., Shalaby, A. S., Persaud, B. N., Development of planning level transportation safety tools using Geographically Weighted Poisson Regression, Accident Analysis & Prevention, 42(2), 676-688, 2010.
  • Bidanset, P. E., Lombard, J. R., The effect of kernel and bandwidth specification in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal, Journal of Property Tax Assessment & Administration, 11(3), 5-14, 2014.
  • Cho, S. H., Lambert, D. M., Chen, Z., Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data, Applied Economics Letters, 17(8), 767-772, 2010.
  • Kauermann, G., Opsomer, J. D., Generalized cross-validation for bandwidth selection of backfitting estimates in generalized additive models, Journal of Computational and Graphical Statistics, 13(1), 66-89, 2004.
  • Zougab, N., Adjabi, S., Kokonendji, C. C., Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation, Computational Statistics & Data Analysis, 75, 28-38, 2014.
  • Brook, R. J. ve Arnold, G. C., Applied regression analysis and experimental design, Routledge, 2018.
  • Miles, J. ve Shevlin, M., Applying regression and correlation: A guide for students and researchers, Sage, 2001.
  • Israeli, O., A Shapley-based decomposition of the R-square of a linear regression, The Journal of Economic Inequality, 5(2), 199-212, 2007.
  • Tan, P. N., Steinbach, M. Karpatne, A. ve Kumar, V., Introduction to data mining. Pearson, 2018.
  • Chan, Y. H., Biostatistics 201: linear regression analysis, Singapore Med J, 45(2), 55-61, 2004.
  • Celik, M., Kazar, B. M., Shekhar, S. ve Boley, D., Parameter Estimation for the Spatial Autoregression Model: A Rigorous Approach, Proceedings of the Second NASA Data Mining Workshop: Issues and Applications in Earth Science, Pasadena, A.B.D., 2006.
  • Kazar, B. M. ve Celik, M., Spatial autoregression (SAR) model: Parameter estimation techniques, Springer Briefs in Computer Science, ISBN:978-1461418412, Springer, March 2012.
  • Shekhar, S., Vatsavai, R.R., Celik, M., Spatial and spatiotemporal data mining: Recent advances, Data Mining: Next Generation Challenges and Future Directions, 1-34, 2009.
  • Tasyurek, M., Celik, M., Akıllı Durak Sistemindeki Araç Seyahat Sürelerinin Birleşik Yapay Sinir Ağları Kullanarak Tahmini, Avrupa Bilim ve Teknoloji Dergisi, 72-79, 2020.
  • Celik, M., Dokuz, A. S., Dadaser-Celik, F., Emerging and Vanishing Association Pattern Mining in Hydroclimatic Datasets, Karaelmas Fen ve Mühendislik Dergisi , 8, 30-37, 2018.
  • Celik M., Dadaser-Celik, F., Dokuz A.S., Discovery of hydrometeorological patterns, Turkısh Journal Of Electrical Engineering and Computer Sciences, 22, 840-857, 2014
  • Celik M., Dokuz A.S., Discovering socio-spatio-temporal important locations of social media users, Journal of Computatıonal Science, 22, pp.85-98, 2017.
Yıl 2021, Cilt: 36 Sayı: 2, 715 - 726, 05.03.2021
https://doi.org/10.17341/gazimmfd.757131

Öz

Kaynakça

  • Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., Sensing as a service model for smart cities supported by internet of things, Transactions on Emerging Telecommunications Technologies, 25(1), 81-93, 2014.
  • Prasad, A. V., Exploring the convergence of big data and the Internet of Things, IGI Global, 2017.
  • Fotheringham, A. S., Brunsdon, C. ve Charlton, M., Geographically weighted regression: the analysis of spatially varying relationships, John Wiley & Sons, 2003.
  • Huang, B., Wu, B., Barry, M., Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices, International Journal of Geographical Information Science, 24(3), 383-401, 2010.
  • Fotheringham, A. S., Crespo, R., Yao, J., Geographical and temporal weighted regression (GTWR), Geographical Analysis, 47(4), 431-452, 2015.
  • Ma, X., Zhang, J., Ding, C., Wang, Y., A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership, Computers, Environment and Urban Systems, 70, 113-124, 2018.
  • Li, Z., Fotheringham, A. S., Li, W., Oshan, T., Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations, International Journal of Geographical Information Science, 33(1), 155-175, 2019.
  • Tasyurek, M., Celik, M., RNN-GWR: A geographically weighted regression approach for frequently updated data, Neurocomputing, 399, 258-270, 2020.
  • Li, Z., Fotheringham, A. S., Computational improvements to multi-scale geographically weighted regression, International Journal of Geographical Information Science, 1-20, 2020.
  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., Fotheringham, A. S., mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269, 2019.
  • Guo, Y., Tang, Q., Gong, D. Y., Zhang, Z., Estimating ground-level PM2. 5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model, Remote Sensing of Environment, 198, 140-149, 2017.
  • He, Q., Huang, B., Satellite-based high-resolution PM2. 5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model, Environmental Pollution, 236, 1027-1037, 2018.
  • Lu, B., Brunsdon, C., Charlton, M., Harris, P., Geographically weighted regression with parameter-specific distance metrics, International Journal of Geographical Information Science, 31(5), 982-998, 2017.
  • Lu, B., Yang, W., Ge, Y., Harris, P., Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths, Computers, Environment and Urban Systems, 71, 41-57, 2018.
  • Fotheringham, A. S., Yang, W., Kang, W., Multiscale geographically weighted regression (MGWR), Annals of the American Association of Geographers, 107(6), 1247-1265, 2017.
  • Gollini, I., Lu, B., Charlton, M., Brunsdon, C., Harris, P., GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models, arXiv preprint arXiv:1306.0413, 2013.
  • Guo, L., Ma, Z., Zhang, L., Comparison of bandwidth selection in application of geographically weighted regression: a case study, Canadian Journal of Forest Research, 38(9), 2526-2534, 2008.
  • Lu, B., Charlton, M., Brunsdon, C., Harris, P., The Minkowski approach for choosing the distance metric in geographically weighted regression, International Journal of Geographical Information Science, 30(2), 351-368, 2016.
  • Da Silva, A. R. , De Oliveira Lima, A., Geographically weighted beta regression, Spatial Statistics, 21, 279-303, 2017.
  • Leong, Y. Y., Yue, J. C., A modification to geographically weighted regression, International Journal of Health Geographics, 16(1), 11, 2017.
  • Zou, B., Pu, Q., Bilal, M., Weng, Q., Zhai, L., Nichol, J. E., High-resolution satellite mapping of fine particulates based on geographically weighted regression, IEEE Geoscience and Remote Sensing Letters, 13(4), 495-499, 2016.
  • Fotheringham, A. S., Oshan, T. M., Geographically weighted regression and multicollinearity: dispelling the myth, Journal of Geographical Systems, 18(4), 303-329, 2016.
  • Chu, H. J., Kong, S. J., Chang, C. H., Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression, International Journal of Applied Earth Observation And Geoinformation, 65, 1-11, 2018.
  • Harris, R., Singleton, A., Grose, D., Brunsdon, C., Longley, P., Grid enabling geographically weighted regression: a case study of participation in higher education in England, Transactions in GIS, 14(1), 43-61, 2010.
  • Tran, H. T., Nguyen, H. T., Tran, V. T., Large-scale geographically weighted regression on Spark, In 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), IEEE, 127-132, 2016.
  • Pozdnoukhov, A., Kaiser, C., Scalable local regression for spatial analytics, In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 361-364, 2011.
  • Novo, O., Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5(2), 1184-1195, 2018.
  • Stergiou, C., Psannis, K. E., Kim, B. G., Gupta, B., Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964-975, 2018.
  • Yıldırım, G., Tatar, Y., Uzak kullanıcı destekli bir IoT-WSN sanal laboratuvarı ve test platformu: FıratWSN, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4), 1831-1846, 2019.
  • Hadayeghi, A., Shalaby, A. S., Persaud, B. N., Development of planning level transportation safety tools using Geographically Weighted Poisson Regression, Accident Analysis & Prevention, 42(2), 676-688, 2010.
  • Bidanset, P. E., Lombard, J. R., The effect of kernel and bandwidth specification in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal, Journal of Property Tax Assessment & Administration, 11(3), 5-14, 2014.
  • Cho, S. H., Lambert, D. M., Chen, Z., Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data, Applied Economics Letters, 17(8), 767-772, 2010.
  • Kauermann, G., Opsomer, J. D., Generalized cross-validation for bandwidth selection of backfitting estimates in generalized additive models, Journal of Computational and Graphical Statistics, 13(1), 66-89, 2004.
  • Zougab, N., Adjabi, S., Kokonendji, C. C., Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation, Computational Statistics & Data Analysis, 75, 28-38, 2014.
  • Brook, R. J. ve Arnold, G. C., Applied regression analysis and experimental design, Routledge, 2018.
  • Miles, J. ve Shevlin, M., Applying regression and correlation: A guide for students and researchers, Sage, 2001.
  • Israeli, O., A Shapley-based decomposition of the R-square of a linear regression, The Journal of Economic Inequality, 5(2), 199-212, 2007.
  • Tan, P. N., Steinbach, M. Karpatne, A. ve Kumar, V., Introduction to data mining. Pearson, 2018.
  • Chan, Y. H., Biostatistics 201: linear regression analysis, Singapore Med J, 45(2), 55-61, 2004.
  • Celik, M., Kazar, B. M., Shekhar, S. ve Boley, D., Parameter Estimation for the Spatial Autoregression Model: A Rigorous Approach, Proceedings of the Second NASA Data Mining Workshop: Issues and Applications in Earth Science, Pasadena, A.B.D., 2006.
  • Kazar, B. M. ve Celik, M., Spatial autoregression (SAR) model: Parameter estimation techniques, Springer Briefs in Computer Science, ISBN:978-1461418412, Springer, March 2012.
  • Shekhar, S., Vatsavai, R.R., Celik, M., Spatial and spatiotemporal data mining: Recent advances, Data Mining: Next Generation Challenges and Future Directions, 1-34, 2009.
  • Tasyurek, M., Celik, M., Akıllı Durak Sistemindeki Araç Seyahat Sürelerinin Birleşik Yapay Sinir Ağları Kullanarak Tahmini, Avrupa Bilim ve Teknoloji Dergisi, 72-79, 2020.
  • Celik, M., Dokuz, A. S., Dadaser-Celik, F., Emerging and Vanishing Association Pattern Mining in Hydroclimatic Datasets, Karaelmas Fen ve Mühendislik Dergisi , 8, 30-37, 2018.
  • Celik M., Dadaser-Celik, F., Dokuz A.S., Discovery of hydrometeorological patterns, Turkısh Journal Of Electrical Engineering and Computer Sciences, 22, 840-857, 2014
  • Celik M., Dokuz A.S., Discovering socio-spatio-temporal important locations of social media users, Journal of Computatıonal Science, 22, pp.85-98, 2017.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Murat Taşyürek 0000-0001-5623-8577

Mete Çelik 0000-0002-1488-1502

Yayımlanma Tarihi 5 Mart 2021
Gönderilme Tarihi 25 Haziran 2020
Kabul Tarihi 11 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 2

Kaynak Göster

APA Taşyürek, M., & Çelik, M. (2021). FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(2), 715-726. https://doi.org/10.17341/gazimmfd.757131
AMA Taşyürek M, Çelik M. FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı. GUMMFD. Mart 2021;36(2):715-726. doi:10.17341/gazimmfd.757131
Chicago Taşyürek, Murat, ve Mete Çelik. “FastGTWR: Hızlı coğrafi Ve Zamansal ağırlıklı Regresyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 2 (Mart 2021): 715-26. https://doi.org/10.17341/gazimmfd.757131.
EndNote Taşyürek M, Çelik M (01 Mart 2021) FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 2 715–726.
IEEE M. Taşyürek ve M. Çelik, “FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı”, GUMMFD, c. 36, sy. 2, ss. 715–726, 2021, doi: 10.17341/gazimmfd.757131.
ISNAD Taşyürek, Murat - Çelik, Mete. “FastGTWR: Hızlı coğrafi Ve Zamansal ağırlıklı Regresyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/2 (Mart 2021), 715-726. https://doi.org/10.17341/gazimmfd.757131.
JAMA Taşyürek M, Çelik M. FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı. GUMMFD. 2021;36:715–726.
MLA Taşyürek, Murat ve Mete Çelik. “FastGTWR: Hızlı coğrafi Ve Zamansal ağırlıklı Regresyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 2, 2021, ss. 715-26, doi:10.17341/gazimmfd.757131.
Vancouver Taşyürek M, Çelik M. FastGTWR: Hızlı coğrafi ve zamansal ağırlıklı regresyon yaklaşımı. GUMMFD. 2021;36(2):715-26.