Araştırma Makalesi
BibTex RIS Kaynak Göster

Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi

Yıl 2021, Cilt: 36 Sayı: 3, 1199 - 1212, 24.05.2021
https://doi.org/10.17341/gazimmfd.753193

Öz

Bu çalışmada, esnek üstyapıların davranışının sayısal olarak belirlenmesi için Sınır Eleman Metodu (SEM) kullanılmıştır. Zeminin malzeme davranışının doğrusal elastik olduğu varsayılan çalışmada SEM, Fourier dönüşüm uzayında ele alınmıştır. Bu çalışmada, elastik yarım uzaydaki iç noktalarda oluşan gerilme ve deplasman dağılımlarının belirlenmesi amaçlanmıştır. Bu amaçla çalışmada, üç boyutlu elastik problemler için bir bilgisayar programı geliştirilmiştir. Sınır eleman formülasyonu kullanılarak belirlenen esnek üstyapılarda oluşan gerilme ve deplasman dağılımlarının sonuçları, literatürde verilen Boussinesq denklemlerinin kullanılmasıyla elde edilen değerler ile karşılaştırılmıştır. SEM ve Boussinesq formülünden elde edilen sonuçların birbiriyle mükemmel bir uyum içinde olduğu sonucuna varılmıştır.

Kaynakça

  • 1. Yoder E.J. and Witczak M.W., Principles of Pavement Design, 2nd Ed., JohnWiley&Sons, Toronto-Canada, 1975.
  • 2. Kim S.M., Roesset J.M., Dynamic response of a beam on a frequency-independent damped elastic foundation to moving load, Canadian J. of Civil Eng., 30, 460–467, 2003.
  • 3. Sun L., Analytical dynamic displacement response of rigid pavements to moving concentrated and line loads, Int. J. of Solids and Struct., 43, 4370–4383, 2006.
  • 4. Rahman M.M., Saha S., Hamdi A.S.A., Bin Alam M.J., Development of 3-D finite element models for geo-jute reinforced flexible pavement, Civil Eng. J., 5, 437-446, 2019.
  • 5. Huang Y.H., Pavement design and analysis. Pearson Prentice Hall, New Jersey, 2004.
  • 6. Hu X., Di Sun L.J., Measuring tire ground pressure distribution of heavy vehicle, J. of Tongji Univ., 33, 1443–1448, 2005.
  • 7. Hernandez J.A., Al-Qadi I.L., Tire–pavement interaction modelling: hyperelastic tire and elastic pavement, Road Materials and Pavement Design, 18, 1067–1083, 2017.
  • 8. Weissman S.L., Influence of tire-pavement contact stress distribution on development of distress mechanisms in pavements, Transp. Res. Rec., 161–167, 1998
  • 9. Duncan J.M., Monismith C.L., Wilson E.L., Finite element analyses of pavements, Highway Research Board, 38, 18–33, 1968.
  • 10. Zheng L., Hai-lin Y., Wan-ping W., Ping C., Dynamic stress and deformation of a layered road structure under vehicle traffic loads: Experimental measurements and numerical calculations, Soil Dyn. and Earthquake Eng., 39, 100–112, 2012.
  • 11. Lee J.H., Kim J.K., Tassoulas J.L., Dynamic analysis of a layered half-space subjected to moving line loads, Soil Dyn. Earthquake Eng., 47, 16–31, 2013.
  • 12. Yin H., Solaimanian M., Kumar T., Stoffels S., The effect of loading time on flexible pavement dynamic response: A finite element analysis, Mechanics of Time-Dependent Materials, 11, 265–288, 2007.
  • 13. Yoo P.J., Al-Qadi I.L., Effect of transient dynamic loading on flexible pavements, Transp. Res. Rec., 129–140, 2007.
  • 14. Ju S.H., Finite element investigation of traffic induced vibrations, J. Sound and Vib., 321, 837–853, 2009.
  • 15. Al-Qadi I.L., Hernandez J.A., Gamez, A., Ziyadi M., Gungor O.E., Kang S., Impact of wide-base tires on pavements: A national study, Transp. Res. Rec., 2672, 186–196, 2018.
  • 16. Khavassefat P., Jelagin D., Birgisson B., A computational framework for viscoelastic analysis of flexible pavements under moving loads, Mater. and Struct., 45, 1655–1671, 2012.
  • 17. Jiang X., Zeng C., Gao X., Liu Z., Qiu Y., 3D FEM analysis of flexible base asphalt pavement structure under non-uniform tyre contact pressure, Int. J. Pavement Eng., 8436, 1–13, 2017.
  • 18. Beskou N.D., Hatzigeorgiou G.D., Theodorakopoulos D.D., Dynamic inelastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment, Soil Dyn. Earthquake Eng., 90, 420–431, 2016.
  • 19. Nega A., Nikraz H., Evaluation of tire-pavement contact stress distribution of pavement response and some effects on the flexible pavements, Int. Conf. on Highway Pavements and Airfield Technology, Philadelphia, USA, 174–185, 27-30 August, 2017.
  • 20. Castillo D., Gamez A., Al-Qadi I., Homogeneous versus heterogeneous response of a flexible pavement structure: Strain and domain analyses, J. Eng. Mech., 145, 1–11, 2019.
  • 21. Djellali A., Houam, A., Saghafi B., Hamdane A., Benghazi Z., Static analysis of flexible pavements over expansive soils, Int. J. Civil Eng., 15, 391–400, 2017.
  • 22. Vale C., Influence of vertical load models on flexible pavement response - An investigation, Int. J. Pavement Eng., 9, 247–255, 2008.
  • 23. François S., Pyl L., Masoumi H.R., Degrande G., The influence of dynamic soil-structure interaction on traffic induced vibrations in buildings, Soil Dyn. Earthquake Eng., 27, 655–674, 2007.
  • 24. Lu J.F., Xu B., Wang J.H., A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media, Int. J. Solids Struct. 46, 3771–3781, 2009.
  • 25. Deneme I.O., Yerli H.R., Formulation of 2D elastodynamic problems with boundary element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 25(1), 57-64, 2010.
  • 26. Yerli H.R., Deneme I.O., Elastodynamic boundary element formulation employing discontinuous curved elements, Soil Dyn. Earthquake Eng., 28, 480–491, 2008.
  • 27. Banerjee P.K., The Boundary Element Methods in Engineering, McGraw-Hill, London, UK, 1994.
  • 28. Brebbia C.A. and Dominguez J., Boundary Elements an Introductory Course, Computational Mechanics Publications, Southampton, UK, 1989.
  • 29. Partridge P.W., Brebbia C.A. and Wrobel L.C., The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton,UK, 1992.
  • 30. Mengi Y., Tanrikulu A.H. and Tanrikulu, A.K., Boundary Element Method For Elastic Media: An Introduction, METU Press, Ankara, Turkiye, 1994.
  • 31. Lombaert G., Degrande G., Experimental validation of a numerical prediction model for free field traffic induced vibrations by in situ experiments, Soil Dyn. Earthquake Eng., 21, 485–497, 2001.
  • 32. Beskou N.D., Theodorakopoulos, D.D., Dynamic effects of moving loads on road pavements: A review, Soil Dyn. Earthquake Eng., 31, 547–567, 2011.
  • 33. Lu Y.J., Wang L.J., Yang Q., Ren J.Y., Analysis of asphalt pavement mechanical behaviour by using a tire-pavement coupling model, Int. J. Simulation Modelling, 17, 245–256, 2018.
  • 34. Andersen L., Nielsen S.R.K., Boundary element analysis of the steady-state response of an elastic half-space to a moving force on its surface, Eng. Anal. Boundary Elem., 27, 23–38, 2003.
  • 35. Sun Z., Kasbergen C., Skarpas A., Anupam K., Van Dalen K.N., Erkens S.M.J.G., Dynamic analysis of layered systems under a moving harmonic rectangular load based on the spectral element method, Int. J. Solids Struct., 181, 45–61, 2019.
  • 36. Tanrikulu A.H., İki malzemeli kompozitin dinamik analizi için yerel olmayan sınır şartlarını içeren bir sınır eleman modeli, Doktora Tezi, ÇukurovaÜniversitesi, Fen Bilimleri Enstitüsü, Adana, 1999.
  • 37. O’Flaherty C.A., Highways: Highway Engineering v. 2. Hodder Arnold, London-UK, 1988.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Özgür Deneme 0000-0001-5826-7187

Yayımlanma Tarihi 24 Mayıs 2021
Gönderilme Tarihi 15 Haziran 2020
Kabul Tarihi 1 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 3

Kaynak Göster

APA Deneme, İ. Ö. (2021). Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1199-1212. https://doi.org/10.17341/gazimmfd.753193
AMA Deneme İÖ. Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi. GUMMFD. Mayıs 2021;36(3):1199-1212. doi:10.17341/gazimmfd.753193
Chicago Deneme, İbrahim Özgür. “Esnek üstyapılarda Tekerlek Temas Gerilmesi Ve Deplasman dağılımlarının üç Boyutlu sınır Eleman Metodu Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 3 (Mayıs 2021): 1199-1212. https://doi.org/10.17341/gazimmfd.753193.
EndNote Deneme İÖ (01 Mayıs 2021) Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 3 1199–1212.
IEEE İ. Ö. Deneme, “Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi”, GUMMFD, c. 36, sy. 3, ss. 1199–1212, 2021, doi: 10.17341/gazimmfd.753193.
ISNAD Deneme, İbrahim Özgür. “Esnek üstyapılarda Tekerlek Temas Gerilmesi Ve Deplasman dağılımlarının üç Boyutlu sınır Eleman Metodu Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/3 (Mayıs 2021), 1199-1212. https://doi.org/10.17341/gazimmfd.753193.
JAMA Deneme İÖ. Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi. GUMMFD. 2021;36:1199–1212.
MLA Deneme, İbrahim Özgür. “Esnek üstyapılarda Tekerlek Temas Gerilmesi Ve Deplasman dağılımlarının üç Boyutlu sınır Eleman Metodu Ile Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 3, 2021, ss. 1199-12, doi:10.17341/gazimmfd.753193.
Vancouver Deneme İÖ. Esnek üstyapılarda tekerlek temas gerilmesi ve deplasman dağılımlarının üç boyutlu sınır eleman metodu ile belirlenmesi. GUMMFD. 2021;36(3):1199-212.