Bu yayın, ikinci derece zaman gecikmeli modellerin kararlılık ve dayanıklı performansı için kesir dereceli oransal-integral denetleyicinin adım adım tasarımına odaklanmaktadır. Analitik olarak elde edilmiş denklemler genelleştirilmiştir ve söz konusu modeller için kullanılabilir. Yöntemin ana hedefi, Bode çizimindeki kazanç ve faz kesim frekansları arasında kalan faz eğrisini düzleştirmektir. Bu şekilde, kazanç değişimlerine karşı dayanıklılık sağlanacaktır. Bunun yanısıra, tüm sistemin kararlılığı temin edilecektir. Tasarım aşamasında, literatürde var olan çalışmaların aksine sadece kazanç kesim frekansı değil, kazanç ve faz kesim frekanslarının her ikisi de ele alınmıştır. Ayrıca, faz düzleştirme işlemi faz türevinin sıfıra eşitlenmesi ile sağlanmamıştır. Bu yayın, probleme farklı bir bakış açısı getirmektedir. İki farklı denetleyici hesaplanmıştır. İlk denetleyici, istenen kazanç kesim frekansı ve faz payı özelliklerini sağlamaktadır. İkinci ise faz kesim frekansı ve kazanç payını temin etmektedir. Daha sonra bu denetleyiciler bağlanmıştır ve her iki durumu da sağlayan tek bir denetleyici elde edilmiştir. Önerilen denklemler, literatürden iki farklı model üzerine uygulanmış ve sonuçlar grafiksel olarak verilmiştir.
SOPTD model FOPI denetleyici analitik tasarım frekans özellikleri BODE’nin ideal çevrimi
SOPTD plant FOPI controller analytical design frequency properties BODE’s ideal loop
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 10 Kasım 2021 |
Gönderilme Tarihi | 14 Şubat 2021 |
Kabul Tarihi | 9 Mayıs 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 37 Sayı: 1 |