Türkiye’de bir LPG dolum terminali için buhar bulutu patlama riskinin sonuç analizi yaklaşımı ile değerlendirilmesi
Yıl 2024,
Cilt: 39 Sayı: 3, 1783 - 1796, 20.05.2024
Ferdi Çalık
,
M. A. Neşet Kadırgan
,
Gökçen Çiftçioğlu
Öz
Bu çalışmada; Türkiye’de faaliyet gösteren bir LPG (sıvılaştırılmış Propan gazı) dolum tesisinde, Temmuz 2017 tarihinde yaşanan yaklaşık 15 dakikalık bir ramak-kala LPG dispersiyonu kayıtlarına dayanılarak, ALOHA© (Areal Locations of Hazardous Atmospheres v.5.4.4) ve MARPLOT haritalama yazılımları üzerinden bir “Sonuç Analizi Modelleme” çalışması gerçekleştirilmiştir. Patlama simülasyonu sonucu meydana gelen aşırıbasınç (Ps; Pascal) dalgasının; seçilen hasas lokasyonlarda canlı, yapı ve tesis ekipmanları üzerinde oluşturacağı hasar olasılıkları Probit(olasılık) fonksiyonları ile değerlendirilmiştir. Tüm LPG buhar bulutu patlama senaryoları için üç tür zarar görebilirlik(hasar) türü belirlenmiştir. Bu hasar türleri; “Yapıların Yıkılması”, “Yapı Hasarı Kaynaklı Ciddi Yaralanma veya Ölüm” ve “Camların Parçalanması” şeklinde tanımlanmıştır.
Çalışmanın sonuçlarına göre; 15 dakika (daha önce yaşanan ramak-kala LPG dispersiyon süresi) boyunca S-01(1,7 mm: çok küçük sızıntı delik çapı), S-02(5,5 mm: küçük sızıntı delik çapı), S-03(22,4 mm: orta sızıntı delik çapı) senaryolarında oluşan LPG buhar bulutu kütlesinin patlaması ile oluşacak hasar canlı ve yapılar üzerinde sınırlı bir etkiye sahip iken (patlama noktasına olan mesafe ve gaz dispersiyon yönüne bağlı etkiler), tank çiftliğinde domino etkisi sonucu daha büyük patlama olaylarına sebebiyet verebileceği öngörülmektedir. S-04 senaryosu için yakın mesafedeki lokasyonlarda “Camların Parçalanması” riski söz konusudur. (A: Tesis içi kumanda odası %99, B: Komşu tesis idari bina %99) S-05 senaryo sonucuna göre; patlayabilir buhar bulutu kütlesindeki artışa paralel olarak ölüm ve yapısal yıkım olasılığı yakın lokasyonlar için %76 ve %90 seviyelerine çıkmaktadır.
Destekleyen Kurum
Marmara Üniversitesi Bilimsel Araştırma Projeleri Komisyonu - BAPKO
Proje Numarası
Proje ID: 1811, Proje Kodu: FEN-C-DRP-110718-0400
Teşekkür
Yazarlar Marmara Üniversitesi BAPKO birimine teşekkür ederler.
Kaynakça
- [1] H.M. Aquino-Gaspar, C.O.Diaz-Ovalle, A.L.Molina, C.Conde-Mejia, L.M. Valenzuela-Gomez; Incident analysis of the “Pajaritos” petrochemical complex; Journal of Loss Prevention in the Process Industries;70; 2021; 104404; https://doi.org/10.1016/j.jlp.2021.104404
- [2] Dongdong Yang, Guoming Chen, Ziliang Dai; Accident modeling of toxic gas-containing flammable gas release and explosion on an offshore platform; Journal of Loss Prevention in the Process Industries; Volume 65; 2020; 104118; https://doi.org/10.1016/j.jlp.2020.104118.
- [3] https://medyabar.com/haber/4946636/hendekte-patlama40-patlama-cevre-koylerdeki-evlerde-bile-hasar-olusturdu, Güncelleme Tarihi:03 Temmuz 2020, Erişim Tarihi: 04.01.2021
- [4] Uday Kumar Chakrabarti, Jigisha K. Parikh; Route Risk Evaluation on Class-2 Hazmat Transportation, Process Safety and Environmental Protection, Volume 89, 2011, Pages 248-260, doi:10.1016/j.psep.2011.04.003
- [5] Shan Lyu, Shuhao Zhang, Xiaomei Huang, Shini Peng, Jun Li; Investigation and modeling of the LPG tank truck accident in Wenling; Process Safety and Environmental Protection; 157; 2022; 493-508, https://doi.org/10.1016/j.psep.2021.10.022
- [6] Yonghao Zhou, Yanchao Li, Haipeng Jiang, Lei Huang, Kai Zhang, Wei Gao; Experimental study on unconfined methane explosion: Explosion characteristics and overpressure prediction method; Journal of Loss Prevention in the Process Industries; Volume 69; 2021; 104377; https://doi.org/10.1016/j.jlp.2020.104377.
- [7] Bahareh Inanloo, Berrin Tansel, Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia, Journal of Environmental Management, Volume 156, 2015, Pages 1-9, https://doi.org/10.1016/j.jenvman.2015.02.044.
- [8] G.F.Kinney, K.J.Graham, The Shock Front; Explosive Shocks in Air; Editör: K.A. McBride; Springer Science, Newyork; 50-68, second edition,1985
- [9] van den Berg AC, Lannoy A. Methods for vapor cloud explosion blast modeling. J Hazard Mater 1993;34(2):151–71. https://doi.org/10.1016/0304-3894(93) 85003-W.
- [10] A.C. van den Berg, The multi-energy method: A framework for vapor cloud explosion blast prediction, Journal of Hazardous Materials, Volume 12, 1985, Pages 1-10, https://doi.org/10.1016/0304-3894(85)80022-4.
- [11] Baker, Quentin A., et al. "Recent developments in the Baker‐Strehlow VCE analysis methodology." Process Safety Progress 17.4 (1998): 297-301.
- [12] Long Ding, Faisal Khan, Jie Ji, A novel vulnerability model considering the synergistic effect of fire and overpressure in chemical processing facilities, Reliability Engineering & System Safety, Volume 217, 2022, 108081, https://doi.org/10.1016/j.ress.2021.108081.
- [13] C.J. Lea, A review of the State-of-the-Art in Gas Explosion Modelling, Health&Safety Laboratory, Page 15-20, ©Crown Copyright 2002, Harpur Hill, Buxton
- [14] A. Bernatik, P.Senovsky, M.Pitt, LNG as a Potential alternative fuel-Safety and security of storage facilities, Journal of Loss Prevention in the Process Industries, 24(2011)19-24, doi:10.1016/j.jlp.2010.08.003
- [15] R. Benintendi; Statistics and Reliability for Process Safety; Process Safety Calculations, IChemE; Elsevier, Editör: Anita A. Koch; Cambridge; MA02139; 227-249, 2018
- [16] Xianzhao Song, Jing Zhang, Dan Zhang, Lifeng Xie, Bin Li; Dispersion and explosion characteristics of unconfined detonable aerosol and its consequence analysis to humans and buildings; Process Safety and Environmental Protection; Volume 152; 2021; Pages 66-82; https://doi.org/10.1016/j.psep.2021.05.041.
- [17] I. Sellami, R. Nait-Said, K. Chetehouna, C. de Izarra, F. Zidani, Quantitative consequence analysis using Sedov-Taylor blast wave model. Part II: A case study in Algerian gas industry, Process Safety and Environmental Protection, Volume 116, 2018, Pages 771-779; https://doi.org/10.1016/j.psep.2018.02.003.
- [18] M.Aliff Farhan Bustani, Siti Aslina Hussain, Quantitative Risk Assessment on Onshore Gas Terminal Plant, Journal of Occupational Safety and Health, Volume 15, No.2, December 2018, ISSN 1675-5466
- [19] Robin Pitblado, Brian Bain, Andreas Falck, Kjellaug Litland, Cynthia Spitzenberger, Frequency data and modification factors used in QRA studies, Journal of Loss Prevention in the Process Industries, Volume 24, Issue 3, 2011, Pages 249-258, https://doi.org/10.1016/j.jlp.2010.09.009.
- [20] International Association of Oil&Gas Producers, Risk Assessment Data Directory-Process Release Frequencies; Report 434-01; September 2019
- [21] Inanloo, Bahareh, and Berrin Tansel. "Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia." Journal of environmental management 156 (2015): 1-9, http://dx.doi.org/10.1016/j.jenvman.2015.02.044
- [22] U.S Department of Commerce, National Oceanic and Atmospheric Administration, MARPLOT Fact Sheet, December 2020, https://response.restoration.noaa.gov/sites/default/files/marplot.pdf, Erişim Tarihi: 14.01.2022
- [23] Nilambar Bariha, Indra Mani Mishra, Vimal Chandra Srivastava, Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India, Journal of Loss Prevention in the Process Industries, Volume 40, 2016, page 449-460, http://dx.doi.org/10.1016/j.jlp.2016.01.020
- [24] J.H. Luo,b, M. Zheng, X.W. Zhao, C.Y. Huob, L. Yang, Simplified expression for estimating release rate of hazardous gas from a hole on high-pressure pipelines, Journal of Loss Prevention in the Process Industries 19 (2006), 362–366, doi:10.1016/j.jlp.2005.06.029
- [25] Mercedes Gómez-Mares, Miguel Muñoz, Joaquim Casal, Radiant heat from propane jet fires, Experimental Thermal and Fluid Science, 34, 2010, 323-329, doi:10.1016/j.expthermflusci.2009.10.024.