Kimyasal metalurjide çevreci bir yaklaşım: Solvometalurji
Yıl 2024,
Cilt: 39 Sayı: 4, 2643 - 2654, 20.05.2024
Çisem Çelik Kurtulan
,
Şevki Samet Kaplan
,
Elif Güloğlu
,
Gökhan Orhan
,
Sebahattin Gürmen
,
Mehmet Şeref Sönmez
Öz
Hidrometalurji metal ekstraksiyonunda sıkça kullanılan etkin ve bilinen bir yöntemdir. Ancak bu sistemlerde kullanılan yüksek miktarda su ve açığa çıkan atık asit miktarı sebebiyle, bilim dünyasında alternatif metot araştırma faaliyetleri her geçen gün artmaktadır. Bu noktada literatür incelendiğinde yeşil kimya ve solvometalurji kavramının ön plana çıktığı görülmektedir. Bu çalışmada solvometalurjik yöntemlerde kullanılan yeşil çözücüler tanımlanmış, iyonik sıvılar ve ötektik altı çözücüler hakkında bilgiler verilmiştir. Solvometalurjik yöntemlerin birincil hammaddelere uygulandığı örneklere yer verilmiş, bu bağlamda nadir toprak elementlerinin ve bakırın solvometalurjik yöntemlerle eldesi üzerine detaylı açıklamalarda bulunulmuştur. İkincil kaynaklardan hareketle; atık lityum iyon pillerin, floresan lamba atıklarının, hurda NdFeB ve SmCo mıknatısların, maden atıklarından solvometalurjik yöntemler kullanılarak metallerin geri kazanılması hakkında detaylı bilgiler verilmiştir. Sonuç olarak; solvometalurjinin hidrometalurjik temelli yöntemlere göre daha az su kullanımı başta olmak üzere üretimde kaynak kullanımını azaltma iddiası taşıdığı, solvometalurjik yöntemlerin uygulandığı birçok proseste gerek çözümlendirme verimleri, gerekse çözelti saflaştırma ve zenginleştirme oranlarının daha yüksek olduğu, bu yöntemlerin oda sıcaklığında çalışma olanağı ve geleneksel yöntemlerle karşılaştırıldığında çok daha düşük enerji tükettiği ifade edilmiştir. Solvometalurjik yöntemlerin araştırıldığı akademik çalışmaların önümüzdeki dönemlerde de artarak devam edeceğinin beklendiği, bununla birlikte yöntemin laboratuvar ölçeğinden yarı-endüstriyel hatta endüstriyel boyuta taşınmasına yönelik çalışmaların kısa-orta vadede artarak devam edeceğinin öngörüldüğü belirtilmiştir.
Destekleyen Kurum
Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu Nadir Toprak Elementleri Araştırma Enstitüsü
Teşekkür
Yazarlar Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu Nadir Toprak Elementleri Araştırma Enstitüsü tarafından desteklenen “Bastnazit Kompleks Cevherinden/Konsantresinden Nadir Toprak Elementlerinin Solvometalurjik Yöntemle Ekstraksiyonu Ve Oksitlerinin Üretimi” başlıklı ve A8.H1.P3 nolu proje için teşekkür eder.
Kaynakça
- 1. BOR F.Y., Ekstraktif Metalurji Prensipleri, Matbaa Teknisyenleri Basımevi, İstanbul, Türkiye, 1977.
- 2. Gupta C.K., Chemical Metallurgy: Principles and Practice, Wiley-VCH, New Jersey, A.B.D., 2003.
- 3. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 3, 1997.
- 4. Anderson C.G., Dunne R.C., Uhrie J.L., Mineral Processing and Extractive Metallurgy: 100 Years of Innovation, Society For Mining, Metallurgy & Exploration, 2014.
- 5. Hayes P.C., Process Principles in Minerals and Materials Production, Hayes Publisihing Co. , Brisbane, Queensland, Australia, 2003.
- 6. Binnemans K., Jones P.T., Solvometallurgy: An Emerging Branch of Extractive Metallurgy, Journal of Sustainable Metallurgy, 3, 570–600, 2017.
- 7. Anastas P.T., Warner J.C., Green Chemistry: Theory and Practice, Oxford University Press, 1998.
- 8. Sheldon R.A., Arends I., Hanefeld U., Sheldon R. A., Arends I. and Hanefeld U., Green Chemistry and Catalysis. Wiley-VCH, New Jersey, A.B.D., 2007.
- 9. Anastas P., Eghbali N., Green Chemistry: Principles and Practice, Chemical Society Reviews, 39 (1), 301–312, 2010.
- 10. Cunha S.C., Fernandes J.O., Extraction Techniques with Deep Eutectic Solvents, TrAC Trends in Analytical Chemistry, 105, 225–239, 2018.
- 11. Smith E.L., Abbott A.P., Ryder K.S., Deep Eutectic Solvents (DESs) and Their Applications, Chemical Reviews, 114, 11060–11082, 2014.
- 12. Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F., Deep Eutectic Solvents: Syntheses, Properties and Applications, Chemical Society Reviews, 41 (21), 7108–7146, 2012.
- 13. Richter J., Ruck M., Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents, Molecules, 25 (1), 1–32, 2020.
- 14. Bloecher F.W., Lyometallurgical Tests on Marysvale Uranium Ores, Massachusetts Inst. of Tech., Watertown, Mass. Mineral Engineering Lab, 1950.
- 15. Marcus Y., Ion solvation, Willey, New York, A.B.D., 1985.
- 16. Batchu, N.K., Vander Hoogerstraete T., Banerjee D., Binnemans K., Non-Aqueous Solvent Extraction of Rare-Earth Nitrates from Ethylene Glycol to N-Dodecane by Cyanex 923, Separation and Purification Technology, 174, 544–553, 2017.
- 17. Batchu N.K., Vander Hoogerstraete T., Banerjee D., Binnemans K., Separation of Rare-Earth Ions from Ethylene Glycol (+LiCl) Solutions by Non-Aqueous Solvent Extraction with Cyanex 923, RSC Advances, 7 (72), 45351-45362, 2017.
- 18. Li Z., Li X., Raiguel S., Binnemans K., Separation of Transition Metals from Rare Earths by Non-Aqueous Solvent Extraction from Ethylene Glycol Solutions Using Aliquat 336, Separation and Purification Technology, 201, 318–326, 2018.
- 19. Riaño S., Petranikova M., Onghena B., Vander Hoogerstraete T., Banerjee D., Foreman M.R.StJ., Ekberg C., Binnemans K., Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets, RSC Advances, 7, 32100–32113, 2017.
- 20. Dewulf B., Development of a Solvometallurgical Process for the Separation of Trivalent Yttrium And Europium, KU Leuven, 2018.
- 21. Binnemans K., Jones P.T., Solvometallurgy: An Emerging Branch of Extractive Metallurgy, Journal of Sustainable Metallurgy, 3, 570–600, 2017.
- 22. Kopkova E.K., Shchelokova E.A., Gromov P.B., Processing of Titanomagnetite Concentrate with a Hydrochloric Extract of N-Octanol, Hydrometallurgy, 156, 21–27, 2015.
- 23. Li X., Monnens W., Li Z., Fransaer J., Binnemans K., Solvometallurgical Process for Extraction of Copper from Chalcopyrite and Other Sulfidic Ore Minerals, Green Chemistry, 22, 417–426, 2020.
- 24. Li Z., Li X., Raiguel S., Binnemans K., Separation of Transition Metals from Rare Earths by Non-Aqueous Solvent Extraction from Ethylene Glycol Solutions Using Aliquat 336, Separation and Purification Technology, 201, 318–326, 2018.
- 25. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 2, 1997.
- 26. Free M. L., Hydrometallurgy Fundamentals and Applications, Springer Nature, Londra, İngiltere, 2022.
- 27. Weber C.C., Masters A.F., Maschmeyer T., Structural Features of Ionic Liquids: Consequences for Material Preparation and Organic Reactivity, Green Chemistry, 15, 2655–2679, 2013.
- 28. Huddleston J.G., Willauer H.D., Swatloski R.P., Visser A.E., Rogers R.D., Room Temperature Ionic Liquids as Novel Media for ‘Clean’ Liquid–Liquid Extraction, Chemical Communications, 16, 1765–1766, 1998.
- 29. Peeters N., Janssens K., Vos D., Binnemans K., Riaño S., Choline Chloride-Ethylene Glycol Based Deep-Eutectic Solvents as Lixiviants for Cobalt Recovery from Lithium-Ion Battery Cathode Materials: Are These Solvents Really Green in High-Temperature Processes? Green Chemistry, 24, 6685–6695, 2022.
- 30. Hansen B.B., Spittle S., Chen B., Poe D., Zhang Y., Klein J.M., Horton A., Adhikari L., Zelovich T., Doherty B.W., Gurkan B., Maginn E.J., Ragauskas A., Dadmun M., Zawodzinski T.A., Baker G.A., Tuckerman M.E., Savinell R.F., Sangoro J.R., Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chemical Reviews, 121, 1232–1285, 2021.
- 31. Benvenutti L., Zielinski A.A.F., Ferreira S.R.S., Which is the Best Food Emerging Solvent: IL, DES Or NADES?, Trends in Food Science & Technology, 90, 133–146, 2019.
- 32. Abbott A.P., Capper G., Davies D.L., Rasheed R.K., Tambyrajah V., Novel Solvent Properties of Choline Chloride/Urea Mixtures, Chemical Communications, 1, 70–71, 2003.
- 33. Abbott A.P., Capper G., Davies D.L., Munro H.L., Rasheed R.K., Tambyrajah V., Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains, Chemical Communications. 1, 2010–2011, 2001.
- 34. Scopus - Analyze search results https://www.scopus.com/term/analyzer.uri?sid=d3074379a514c710dabb08e327874051&origin=resultslist&src=s&s=TITLE-ABS-KEY%28deep+eutectic+solvent%29&sort=plf-f&sdt=b&sot=b&sl=36&count=7591&analyzeResults=Analyze+results&txGid=b695a61b4177138131f2ef706b114efe. Erişim Tarihi Ocak 9, 2023.
- 35. Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K., Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids, Journal of the American Chemical Society, 126, 9142–9147, 2004.
- 36. Hayyan M., Mbous Y.P., Looi C.Y., Wong W.F., Hayyan A., Salleh, Z., Mohd-Ali O., Natural Deep Eutectic Solvents: Cytotoxic Profile, SpringerPlus. 5, 1-12, 2016.
- 37. Scopus - Analyze search results https://www.scopus.com/term/analyzer.uri?sid=d3074379a514c710dabb08e327874051&origin=resultslist&src=s&s=TITLE-ABS-KEY%28deep+eutectic+solvent%29&sort=plf-f&sdt=b&sot=b&sl=36&count=7591&analyzeResults=Analyze+results&txGid=b695a61b4177138131f2ef706b114efe. Erişim Tarihi Ocak 9, 2023.
- 38. Gupta C.K., Krishnamurthy N., Extractive Metallurgy of Rare Earths, CRC Press, A.B.D., 2005.
- 39. Entezari-Zarandi A., Larachi F., Selective Dissolution of Rare-Earth Element Carbonates in Deep Eutectic Solvents, Journal of Rare Earths, 37 (5), 528-533, 2018.
- 40. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 2, 1997.
- 41. Luo Y., Yin, C. Ou L., Highly Efficient Dissolution of the Cathode Materials of Spent Ni – Co – Mn Lithium Batteries, Green Chemistry, 24 (17), 6562-6570, 2022.
- 42. Liu M., Ma W., Zhang X., Liang Z., Zhao Q., Recycling Lithium and Cobalt from LIBs Using Microwave-Assisted Deep Eutectic Solvent Leaching Technology at Low-Temperature, Materials Chemistry and Physics, 289, 126466, 2022.
- 43. Osowska N., Paduszyński K., Matczuk M., Ruzik L., New Solvents for Metal Extraction-NADES. Prediction and Optimization of Efficient Extraction of Selected Metals by ICP-MS/MS, Journal at Spectrom, 36, 946–953, 2021.
44. Wang S., Zhang Z., Lu Z., Xu Z., A Novel Method for Screening Deep Eutectic Solvent to Recycle the Cathode of Li-Ion Batteries, Green Chemistry. 22, 4473–4482, 2020.
- 45. Hua Y., Sun Y., Yan F., Wang S., Xu Z., Zhao B., Zhang Z., Ionization Potential-Based Design of Deep Eutectic Solvent for Recycling of Spent Lithium Ion Batteries, Chemical Engineering Journal, 436, 133200, 2021.
- 46. Milevskii N.A., Zinov’eva I. V., Zakhodyaeva Y.A., Voshkin A.A., Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent, Hydrometallurgy, 207, 105777, 2022.
- 47. Yurramendi L., Hidalgo J., Siriwardana A., A Sustainable Process for the Recovery of Valuable Metals From Spent Lithium-Ion Batteries, Materials Proceedings, 5, 100, 2022.
- 48. Van Loy S., Binnemans K., Van Gerven T., Recycling of Rare Earths from Lamp Phosphor Waste: Enhanced Dissolution of LaPO4:Ce3+,Tb3+ by Mechanical Activation, Journal of Cleaner Production, 156, 226–234, 2017.
- 49. Riaño S., Petranikova M., Onghena B., Vander Hoogerstraete T., Banerjee D., Foreman M.R.StJ., Ekberg C., Binnemans K., Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets, Rsc Advances, 7, 32100–32113, 2017.
- 50. Orefice M., Audoor H., Li Z., Binnemans K., Solvometallurgical Route for the Recovery of Sm, Co, Cu and Fe from SmCo Permanent Magnets, Separation and Purification Technology, 219, 281–289, 2019.
- 51. Dewulf B., Riaño S., Binnemans K., Separation of Heavy Rare-Earth Elements by Non-Aqueous Solvent Extraction: Flowsheet Development and Mixer-Settler Tests, Separation and Purification Technology, 290, 120882, 2022.
- 52. Vijayan S.K., Sahajwalla V., Bhattacharya S., Insights into the Options of Energy and Metal Recovery from Automotive Shredder Residue: A Review, Resources, Conservation and Recycling Advances, 15, 200097, 2022.
53. Kopkova E.K.K., Shchelokova E.A.A., Gromov P.B.B., Processing of Titanomagnetite Concentrate with a Hydrochloric Extract of N-Octanol, Hydrometallurgy, 156, 21–27, 2015.
- 54. Akcil, A., Akhmadiyeva, N., Abdulvaliyev, R., Abhilash, & Meshram, P., Overview on Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium, Mineral Processing and Extractive Metallurgy Review, 39, 145–151, 2018.
- 55. Avdibegović D., Binnemans K., Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase, Industrial & Engineering Chemistry Research, 59, 15332–15342, 2020.
56. Borra C.R., Pontikes Y., Binnemans K., Van Gerven T., Leaching of Rare Earths from Bauxite Residue (Red Mud), Minerals Engineering, 76, 20–27, 2015.
- 57. Davris P., Balomenos E., Panias D., Paspaliaris I., Selective Leaching of Rare Earth Elements from Bauxite Residue (Red Mud), Using a Functionalized Hydrophobic Ionic Liquid, Hydrometallurgy, 164, 125–135, 2016.
- 58. Borra C.R., Mermans J., Blanpain B., Pontikes Y., Binnemans K., Van Gerven T., Selective Recovery of Rare Earths from Bauxite Residue by Combination of Sulfation, Roasting And Leaching, Minerals Engineering, 92, 151–159, 2016.
- 59. Avdibegović D., Binnemans K., Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase, Industrial & Engineering Chemistry Research, 59, 15332–15342, 2020.
- 60. Spathariotis S., Peeters N., Ryder K.S., Abbott A.P., Binnemans K., Riaño S., Separation of Iron(III), Zinc(II) and Lead(II) from a Choline Chloride-Ethylene Glycol Deep Eutectic Solvent by Solvent Extraction, RSC Advances, 10, 33161–33170, 2020.
- 61. Palden T., Regadío M., Binnemans K., Selective Solvometallurgical Leaching of Lead and Zinc from Jarosite Residues from the Zinc Industry, In Proceedings of the 4th International Symposium on Enhanced Landfill Mining (ELFM IV), Mechelen-Belçika, 133-136, 5-6 Şubat 2018.
- 62. Rodriguez N., Machiels L., Onghena B., Spooren J., Binnemans K., Selective Recovery of Zinc from Goethite Residue in the Zinc Industry Using Deep-Eutectic Solvents, RSC Advances, 10, 7328–7335, 2020.
Yıl 2024,
Cilt: 39 Sayı: 4, 2643 - 2654, 20.05.2024
Çisem Çelik Kurtulan
,
Şevki Samet Kaplan
,
Elif Güloğlu
,
Gökhan Orhan
,
Sebahattin Gürmen
,
Mehmet Şeref Sönmez
Kaynakça
- 1. BOR F.Y., Ekstraktif Metalurji Prensipleri, Matbaa Teknisyenleri Basımevi, İstanbul, Türkiye, 1977.
- 2. Gupta C.K., Chemical Metallurgy: Principles and Practice, Wiley-VCH, New Jersey, A.B.D., 2003.
- 3. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 3, 1997.
- 4. Anderson C.G., Dunne R.C., Uhrie J.L., Mineral Processing and Extractive Metallurgy: 100 Years of Innovation, Society For Mining, Metallurgy & Exploration, 2014.
- 5. Hayes P.C., Process Principles in Minerals and Materials Production, Hayes Publisihing Co. , Brisbane, Queensland, Australia, 2003.
- 6. Binnemans K., Jones P.T., Solvometallurgy: An Emerging Branch of Extractive Metallurgy, Journal of Sustainable Metallurgy, 3, 570–600, 2017.
- 7. Anastas P.T., Warner J.C., Green Chemistry: Theory and Practice, Oxford University Press, 1998.
- 8. Sheldon R.A., Arends I., Hanefeld U., Sheldon R. A., Arends I. and Hanefeld U., Green Chemistry and Catalysis. Wiley-VCH, New Jersey, A.B.D., 2007.
- 9. Anastas P., Eghbali N., Green Chemistry: Principles and Practice, Chemical Society Reviews, 39 (1), 301–312, 2010.
- 10. Cunha S.C., Fernandes J.O., Extraction Techniques with Deep Eutectic Solvents, TrAC Trends in Analytical Chemistry, 105, 225–239, 2018.
- 11. Smith E.L., Abbott A.P., Ryder K.S., Deep Eutectic Solvents (DESs) and Their Applications, Chemical Reviews, 114, 11060–11082, 2014.
- 12. Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F., Deep Eutectic Solvents: Syntheses, Properties and Applications, Chemical Society Reviews, 41 (21), 7108–7146, 2012.
- 13. Richter J., Ruck M., Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents, Molecules, 25 (1), 1–32, 2020.
- 14. Bloecher F.W., Lyometallurgical Tests on Marysvale Uranium Ores, Massachusetts Inst. of Tech., Watertown, Mass. Mineral Engineering Lab, 1950.
- 15. Marcus Y., Ion solvation, Willey, New York, A.B.D., 1985.
- 16. Batchu, N.K., Vander Hoogerstraete T., Banerjee D., Binnemans K., Non-Aqueous Solvent Extraction of Rare-Earth Nitrates from Ethylene Glycol to N-Dodecane by Cyanex 923, Separation and Purification Technology, 174, 544–553, 2017.
- 17. Batchu N.K., Vander Hoogerstraete T., Banerjee D., Binnemans K., Separation of Rare-Earth Ions from Ethylene Glycol (+LiCl) Solutions by Non-Aqueous Solvent Extraction with Cyanex 923, RSC Advances, 7 (72), 45351-45362, 2017.
- 18. Li Z., Li X., Raiguel S., Binnemans K., Separation of Transition Metals from Rare Earths by Non-Aqueous Solvent Extraction from Ethylene Glycol Solutions Using Aliquat 336, Separation and Purification Technology, 201, 318–326, 2018.
- 19. Riaño S., Petranikova M., Onghena B., Vander Hoogerstraete T., Banerjee D., Foreman M.R.StJ., Ekberg C., Binnemans K., Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets, RSC Advances, 7, 32100–32113, 2017.
- 20. Dewulf B., Development of a Solvometallurgical Process for the Separation of Trivalent Yttrium And Europium, KU Leuven, 2018.
- 21. Binnemans K., Jones P.T., Solvometallurgy: An Emerging Branch of Extractive Metallurgy, Journal of Sustainable Metallurgy, 3, 570–600, 2017.
- 22. Kopkova E.K., Shchelokova E.A., Gromov P.B., Processing of Titanomagnetite Concentrate with a Hydrochloric Extract of N-Octanol, Hydrometallurgy, 156, 21–27, 2015.
- 23. Li X., Monnens W., Li Z., Fransaer J., Binnemans K., Solvometallurgical Process for Extraction of Copper from Chalcopyrite and Other Sulfidic Ore Minerals, Green Chemistry, 22, 417–426, 2020.
- 24. Li Z., Li X., Raiguel S., Binnemans K., Separation of Transition Metals from Rare Earths by Non-Aqueous Solvent Extraction from Ethylene Glycol Solutions Using Aliquat 336, Separation and Purification Technology, 201, 318–326, 2018.
- 25. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 2, 1997.
- 26. Free M. L., Hydrometallurgy Fundamentals and Applications, Springer Nature, Londra, İngiltere, 2022.
- 27. Weber C.C., Masters A.F., Maschmeyer T., Structural Features of Ionic Liquids: Consequences for Material Preparation and Organic Reactivity, Green Chemistry, 15, 2655–2679, 2013.
- 28. Huddleston J.G., Willauer H.D., Swatloski R.P., Visser A.E., Rogers R.D., Room Temperature Ionic Liquids as Novel Media for ‘Clean’ Liquid–Liquid Extraction, Chemical Communications, 16, 1765–1766, 1998.
- 29. Peeters N., Janssens K., Vos D., Binnemans K., Riaño S., Choline Chloride-Ethylene Glycol Based Deep-Eutectic Solvents as Lixiviants for Cobalt Recovery from Lithium-Ion Battery Cathode Materials: Are These Solvents Really Green in High-Temperature Processes? Green Chemistry, 24, 6685–6695, 2022.
- 30. Hansen B.B., Spittle S., Chen B., Poe D., Zhang Y., Klein J.M., Horton A., Adhikari L., Zelovich T., Doherty B.W., Gurkan B., Maginn E.J., Ragauskas A., Dadmun M., Zawodzinski T.A., Baker G.A., Tuckerman M.E., Savinell R.F., Sangoro J.R., Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chemical Reviews, 121, 1232–1285, 2021.
- 31. Benvenutti L., Zielinski A.A.F., Ferreira S.R.S., Which is the Best Food Emerging Solvent: IL, DES Or NADES?, Trends in Food Science & Technology, 90, 133–146, 2019.
- 32. Abbott A.P., Capper G., Davies D.L., Rasheed R.K., Tambyrajah V., Novel Solvent Properties of Choline Chloride/Urea Mixtures, Chemical Communications, 1, 70–71, 2003.
- 33. Abbott A.P., Capper G., Davies D.L., Munro H.L., Rasheed R.K., Tambyrajah V., Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains, Chemical Communications. 1, 2010–2011, 2001.
- 34. Scopus - Analyze search results https://www.scopus.com/term/analyzer.uri?sid=d3074379a514c710dabb08e327874051&origin=resultslist&src=s&s=TITLE-ABS-KEY%28deep+eutectic+solvent%29&sort=plf-f&sdt=b&sot=b&sl=36&count=7591&analyzeResults=Analyze+results&txGid=b695a61b4177138131f2ef706b114efe. Erişim Tarihi Ocak 9, 2023.
- 35. Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K., Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids, Journal of the American Chemical Society, 126, 9142–9147, 2004.
- 36. Hayyan M., Mbous Y.P., Looi C.Y., Wong W.F., Hayyan A., Salleh, Z., Mohd-Ali O., Natural Deep Eutectic Solvents: Cytotoxic Profile, SpringerPlus. 5, 1-12, 2016.
- 37. Scopus - Analyze search results https://www.scopus.com/term/analyzer.uri?sid=d3074379a514c710dabb08e327874051&origin=resultslist&src=s&s=TITLE-ABS-KEY%28deep+eutectic+solvent%29&sort=plf-f&sdt=b&sot=b&sl=36&count=7591&analyzeResults=Analyze+results&txGid=b695a61b4177138131f2ef706b114efe. Erişim Tarihi Ocak 9, 2023.
- 38. Gupta C.K., Krishnamurthy N., Extractive Metallurgy of Rare Earths, CRC Press, A.B.D., 2005.
- 39. Entezari-Zarandi A., Larachi F., Selective Dissolution of Rare-Earth Element Carbonates in Deep Eutectic Solvents, Journal of Rare Earths, 37 (5), 528-533, 2018.
- 40. Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New Jersey, A.B.D., 2, 1997.
- 41. Luo Y., Yin, C. Ou L., Highly Efficient Dissolution of the Cathode Materials of Spent Ni – Co – Mn Lithium Batteries, Green Chemistry, 24 (17), 6562-6570, 2022.
- 42. Liu M., Ma W., Zhang X., Liang Z., Zhao Q., Recycling Lithium and Cobalt from LIBs Using Microwave-Assisted Deep Eutectic Solvent Leaching Technology at Low-Temperature, Materials Chemistry and Physics, 289, 126466, 2022.
- 43. Osowska N., Paduszyński K., Matczuk M., Ruzik L., New Solvents for Metal Extraction-NADES. Prediction and Optimization of Efficient Extraction of Selected Metals by ICP-MS/MS, Journal at Spectrom, 36, 946–953, 2021.
44. Wang S., Zhang Z., Lu Z., Xu Z., A Novel Method for Screening Deep Eutectic Solvent to Recycle the Cathode of Li-Ion Batteries, Green Chemistry. 22, 4473–4482, 2020.
- 45. Hua Y., Sun Y., Yan F., Wang S., Xu Z., Zhao B., Zhang Z., Ionization Potential-Based Design of Deep Eutectic Solvent for Recycling of Spent Lithium Ion Batteries, Chemical Engineering Journal, 436, 133200, 2021.
- 46. Milevskii N.A., Zinov’eva I. V., Zakhodyaeva Y.A., Voshkin A.A., Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent, Hydrometallurgy, 207, 105777, 2022.
- 47. Yurramendi L., Hidalgo J., Siriwardana A., A Sustainable Process for the Recovery of Valuable Metals From Spent Lithium-Ion Batteries, Materials Proceedings, 5, 100, 2022.
- 48. Van Loy S., Binnemans K., Van Gerven T., Recycling of Rare Earths from Lamp Phosphor Waste: Enhanced Dissolution of LaPO4:Ce3+,Tb3+ by Mechanical Activation, Journal of Cleaner Production, 156, 226–234, 2017.
- 49. Riaño S., Petranikova M., Onghena B., Vander Hoogerstraete T., Banerjee D., Foreman M.R.StJ., Ekberg C., Binnemans K., Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets, Rsc Advances, 7, 32100–32113, 2017.
- 50. Orefice M., Audoor H., Li Z., Binnemans K., Solvometallurgical Route for the Recovery of Sm, Co, Cu and Fe from SmCo Permanent Magnets, Separation and Purification Technology, 219, 281–289, 2019.
- 51. Dewulf B., Riaño S., Binnemans K., Separation of Heavy Rare-Earth Elements by Non-Aqueous Solvent Extraction: Flowsheet Development and Mixer-Settler Tests, Separation and Purification Technology, 290, 120882, 2022.
- 52. Vijayan S.K., Sahajwalla V., Bhattacharya S., Insights into the Options of Energy and Metal Recovery from Automotive Shredder Residue: A Review, Resources, Conservation and Recycling Advances, 15, 200097, 2022.
53. Kopkova E.K.K., Shchelokova E.A.A., Gromov P.B.B., Processing of Titanomagnetite Concentrate with a Hydrochloric Extract of N-Octanol, Hydrometallurgy, 156, 21–27, 2015.
- 54. Akcil, A., Akhmadiyeva, N., Abdulvaliyev, R., Abhilash, & Meshram, P., Overview on Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium, Mineral Processing and Extractive Metallurgy Review, 39, 145–151, 2018.
- 55. Avdibegović D., Binnemans K., Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase, Industrial & Engineering Chemistry Research, 59, 15332–15342, 2020.
56. Borra C.R., Pontikes Y., Binnemans K., Van Gerven T., Leaching of Rare Earths from Bauxite Residue (Red Mud), Minerals Engineering, 76, 20–27, 2015.
- 57. Davris P., Balomenos E., Panias D., Paspaliaris I., Selective Leaching of Rare Earth Elements from Bauxite Residue (Red Mud), Using a Functionalized Hydrophobic Ionic Liquid, Hydrometallurgy, 164, 125–135, 2016.
- 58. Borra C.R., Mermans J., Blanpain B., Pontikes Y., Binnemans K., Van Gerven T., Selective Recovery of Rare Earths from Bauxite Residue by Combination of Sulfation, Roasting And Leaching, Minerals Engineering, 92, 151–159, 2016.
- 59. Avdibegović D., Binnemans K., Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase, Industrial & Engineering Chemistry Research, 59, 15332–15342, 2020.
- 60. Spathariotis S., Peeters N., Ryder K.S., Abbott A.P., Binnemans K., Riaño S., Separation of Iron(III), Zinc(II) and Lead(II) from a Choline Chloride-Ethylene Glycol Deep Eutectic Solvent by Solvent Extraction, RSC Advances, 10, 33161–33170, 2020.
- 61. Palden T., Regadío M., Binnemans K., Selective Solvometallurgical Leaching of Lead and Zinc from Jarosite Residues from the Zinc Industry, In Proceedings of the 4th International Symposium on Enhanced Landfill Mining (ELFM IV), Mechelen-Belçika, 133-136, 5-6 Şubat 2018.
- 62. Rodriguez N., Machiels L., Onghena B., Spooren J., Binnemans K., Selective Recovery of Zinc from Goethite Residue in the Zinc Industry Using Deep-Eutectic Solvents, RSC Advances, 10, 7328–7335, 2020.