Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of a Novel Industrial Metal Laser Melting Device and Its Performance Investigation

Yıl 2025, Cilt: 40 Sayı: 3, 1479 - 1494
https://doi.org/10.17341/gazimmfd.1424568

Öz

Additive manufacturing (AM) technologies began to be used all over the world in parallel to 4th Industrial Revolution. Selective Laser Melting Method (SLM) is one of the most preferred AM methods. Developing these types of devices become importance day after day through advantages such as having the minimum cost of waste material by using powder raw material, manufacturability of complex shaped and lattice structured parts, adaptability for topology optimization process. In this study, a unique selective laser melting device which has a unique preheated-double side functioned recoater was designed and manufactured with all its mechanic and electronic/electro-optic equipment. It has also double laser scanning function and positioning mechanism to tune finely focal length of the scanner heads. In view of SLM devices, focal length directly effects the beam diameter on the powder surface which is determined by used laser-optic equipment that can be selected based on mathematical expressions (theoretical beam diameter) and existing beam during manufacturing (experimental beam diameter) For investigation and testing of the efficiency of developed device, single laser track lines with different laser powers was manufactured and investigated. Test results showed that, experimental beam diameter was found as consistent with the theoretical one between 100 W and 200 W. At other power levels, track widths were found as increasing proportional to increasing power in parallel to literature. On the other hand, both melt pool depths and widths were obtained effective at 60 ve 90 J/mm^2 among 3 different experienced energy density.

Proje Numarası

217M499, FDK-7329

Kaynakça

  • 1. Feygin M., Apparatus and method for forming an integral object from laminations, US patent 4,752,352, filed April 17th, 1987, published June 1st, 1988.
  • 2. Drstvensek I., Valentan B., Brajlih T., Strojnik T., Ihan H.N., Direct digital manufacturing as communication and implantation tool in medicine, US-Turkey Workshop On Rapid Technologies, 24, 75-81, 2009.
  • 3. Kamsky G.V., Kolomiets A.A., Popov V.V., Review Of The Main Producers Of 3D-Machines For Metals, Characteristics of The Machines, And Directions Of Development, Международный научно-исследовательский журнал, 8 (50), 48-54, 2015.
  • 4. Hauser, C., Childs, T. H. C., Dalgarno, K. W., Selective Laser Sintering of Stainless Steel 314S HC Processed Using Room Temperature Powder Beds, Proceedings of the Solid Freeform Fabrication Symposium, 273-280, 1999.
  • 5. Mercelis P, Kruth J. P, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping J., 12 (5) 254-265, 2006.
  • 6. Pohl H., Simchi A., Issa M., Dias H. C., Thermal stresses in direct metal laser sintering, Proceedings of the SFF Symposium, 366–372, 2001.
  • 7. Ciraud, P., Verfahren und Vorrichtung zur Herstellung beliebiger Gegenstände aus beliebigem schmelzbarem Material, German patent application DE 2263777, priority filed December 28th, 1971, published July 5th, 1973.
  • 8. Housholder, R., Molding Process, US patent 4,247,508, filed December 3rd, 1979, published January 27th, 1981.
  • 9. Hull, C., Method and apparatus for production of three-dimensional objects by stereolithography", US patent 4,575,330, filed Aug. 8th, 1984, publ. March 11th, 1986.
  • 10. Geiger, M. and Vollertsen, F. (Ed.), Laser Assisted Net Shape Engineering, Proceedings of the LANE '94 conference, Erlangen, October 12-14th, 1994.
  • 11. Nyrhilä, O. and Syrjälä, S., Manufacture of dimensionally precise pieces by sintering, Finnish patent 91725, priority filed April 7th, 1989, published December 5th, 1990.
  • 12. Eureka-Projekt E! 1184, Autosintering, 1994-95.
  • 13. Santos E. C., Shiomi M., Osakada K., Laoui T., Rapid manufacturing of metal components by laser forming, Int. J. Mach. Tools Manuf., 46, (12–13), 1459-1468, 2006.
  • 14. Herzog D., Seyda V., Wycisk E., Emmelmann C., Additive manufacturing of metals, Acta Materialia 117, 371-392, 2016.
  • 15. Lewandowski J. J., Seifi M., Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 46 (1), 151-186, 2016.
  • 16. Kamsky G.V., Kolomiets A.A., Popov V.V., Review Of The Main Producers Of 3d-Machines For Metals, Characteristics Of The Machines, And Directions Of Development, Cyberleninka, 8 (50), 48-54, 2016.
  • 17. EOS, Eos-Metal-Systems, https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems , Yayın tarihi Temmuz 10, 2010. Erişim tarihi Ekim 11, 2022.
  • 18. SLM, Products-and-Solutions/Machines, https://www.slm-solutions.com/products-and-solutions/machines ,Yayın tarihi Ocak 10, 2012. Erişim tarihi Kasım 11, 2022.
  • 19. Aggarwal, A., Patel, S., & Kumar, A., Selective laser melting of 316L stainless steel: physics of melting mode transition and its influence on microstructural and mechanical behavior, Jom, 71, 1105-1116, 2019.
  • 20. Tang, C., Tan, J. L., & Wong, C. H., A numerical investigation on the physical mechanisms of single track defects in selective laser melting. In. J. Heat Mass Transfer, 126, 957-968, 2018.
  • 21. Wayne E. King, Holly D. Barth, Victor M. Castillo, Gilbert F. Gallegos,John W. Gibbs, Douglas E. Hahn, Chandrika Kamath, Alexander M. Rubenchike, Observation of keyhole-mode laser melting in laser powder-bedfusion additive manufacturing, J.Mater.Process. Technol., 214, 2915–2925, 2014.
  • 22. Benarji, K., Jinoop, A. N., Ravikumar, Y., & Paul, C. P., Single track analysis of additive manufactured SS 316L based composites using powder bed fusion, Mater. Today Proc., 115, 156-161, 2023.
  • 23. Shi, W., Wang, P., Liu, Y., Hou, Y., & Han, G., Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness, Powder Technol, 360, 151-164, 2020.
  • 24. Mohanty, S., & Hattel, J. H., Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds, Proc. SPIE Int. Soc. Opt. Eng., 9738, 178-191, 2016.
  • 25. Kazemi, Z., Soleimani, M., Rokhgireh, H., & Nayebi, A., Melting pool simulation of 316L samples manufactured by Selective Laser Melting method, comparison with experimental results, In. J. Therm. Sci., 176, 107538, 2022.
  • 26. Ninpetch, P., Teenok, N., Kowitwarangkul, P., Mahathanabodee, S., Tongsri, R., & Ratanadecho, P., The Influence of Laser Parameters on the Melted Track and Microstructure of AISI 316L Fabricated by L-PBF Process, In Proceedings of the 8th Asia Pacific IIW International Congress, 39-43, 2019.
  • 27. Liu Y., Zhang M., Shi W., Ma Y., Yang J., Study on performance optimization of 316L stainless steel parts by High-Efficiency Selective Laser Melting, Opt.Laser Technol., 138,106872, 2021.
  • 28. A. Baumard, D. Ayrault, O. Fandeur, C. Bordreuil, F. Deschaux-Beaume, Numericaprediction of grain structure formation during laser powder bed fusion of 316 L stainless steel, Mater. Des., 199, 2021.
  • 29. Hu, Z., Nagarajan, B., Song, X., Huang, R., Zhai, W., & Wei, J., Formation of SS316L Single Tracks in Micro Selective Laser Melting: Surface, Geometry, and Defects, Adv. Mater. Sci. Eng., Article ID 9451406, 2019.
  • 30. Cheng, C. W., Liou, Y. W., Lee, A. C., & Tsai, M. C., Single Track of Selective Laser Melting Process: Modeling and Experimental Comparison, J.Laser Micro/Nanoeng., 14, 2, 2019.
  • 31. Lampeas G., Selective Laser Melting process simulation of open lattice cellular materials, MATEC Web of Conferences, 188, 03019, 2018.
  • 32. Dong, Z., Liu, Y., Wen, W., Ge, J., & Liang, J. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: Modeling and experimental approaches, Materials, 12 (1), 50, 2018.
  • 33. Zhuang, J. R., Lee, Y. T., Hsieh, W. H., & Yang, A. S., Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder, Opt. Laser Technol., 103, 59-76, 2018.
  • 34. Du, Y., You, X., Qiao, F., Guo, L., & Liu, Z., A model for predicting the temperature field during selective laser melting, Results Phys., 12, 52-60, 2019.
  • 35. Soundararajan, B., Sofia, D., Barletta, D., & Poletto, M., Review on modeling techniques for powder bed fusion processes based on physical principles, Addit. Manuf., 47, 102336, 2021.
  • 36. Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., & Kruth, J. P., Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manuf. Sci. Eng., 136 (6), 061026, 2014.
  • 37. Kempen, K., Vrancken, B., Thijs, L., Buls, S., Van Humbeeck, J., & Kruth, J.P., Lowering thermal gradients in selective laser melting by pre-heating the baseplate, Solid Freeform Fabrication Symposium Proceedings, 2013.
  • 38. Hagedorn Y., Towards finer structures: state of the art in selective laser melting (SLM), in: Precision fair, Veldhoven, Netherlands, 2013.
  • 39. Mertens, R., Vrancken, B., Holmstock, N., Kinds, Y., Kruth, J. P., & Van Humbeeck, J., Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, Physics Procedia, 83, 882-890, 2016.
  • 40. Kishore, V., Ajinjeru, C., Nycz, A., Post, B., Lindahl, J., Kunc, V., & Duty, C., Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components, Addit. Manuf., 14, 7-12, 2017.
  • 41. Vrancken, B., Buls, S., Kruth, J. P., & Humbeeck, J. V., Preheating of selective laser melted Ti6Al4V: microstructure and mechanical properties, In Proceedings of the 13th World Conference on Titanium, 1269-1277, 2016.
  • 42. Liu, Z. H., Zhang, D. Q., Chua, C. K., & Leong, K. F., Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact., 84, 72-80, 2013.
  • 43. He, K., & Zhao, X., 3D Thermal Finite Element Analysis of the SLM 316L Parts with Microstructural Correlations, Complexity, 2018.
  • 44. Zhang, Q., Xie, J., Gao, Z., London, T., Griffiths, D., & Oancea, V., A metallurgical phase transformation framework applied to SLM additive manufacturing processes, Mater. Des., 166, 107618, 2019.
  • 45. Paschotta, R., M2 Factor, Encycl. Laser Phys. Technol., https://www.rp-photonics.com/m2_factor.html , Yayın tarihi Ocak 10 2009, Erişim tarihi Nisan 11 2022.
  • 46. Wen, W., Zhang, X., Laser Beam Quality of Airy Beam in the Jet Engine Exhaust Induced Turbulence, Atmosphere, 14 (9), 1374, 2023.
  • 47. Gentec-eo. Quantifying the quality of a laser beam with the Beam Parameter Product and the M2 factor. https://www.gentec-eo.com/blog/beam-parameter-product-and-the-m2-factor#:~:text=The%20Beam%20Parameter%20Product%20is,but%20BPP%20varies%20with%20wavelength. Yayın tarihi Eylül 23, 2022. Erişim tarihi Ocak 15, 2024.
  • 48. Glover S. Beam Delivery: M2, BPP, Spot Size & Why You Should Care. https://www.laserchirp.com/2016/11/beam-delivery-m2-bpp-spot-size-why-you-should-care/. Yayın tarihi Kasım 8, 2016. Erişim tarihi Ocak 15, 2024.
  • 49. Eckop. Numerical Aperture and F-Number. https://www.eckop.com/resources/optics/numerical-aperture-and-f-number/. Yayın tarihi Kasım 15, 2019. Erişim Tarihi Ocak 18, 2024.
  • 50. Paschotta R. Numerical Aperture. https://www.rp-photonics.com/numerical_aperture.html. Yayın tarihi Mayıs 19, 2006. Erişim Tarihi Ocak 16, 2024.
  • 51. Edmundoptics, Fundamentals of lasers, https://www.edmundoptics.com/knowledge-center/application-notes/lasers/fundamentals-of-lasers/ , Yayın tarihi Eylül 10 2015, Erişim tarihi Kasım 11 2022.
  • 52. Thorlabs, laser guide, https://www.thorlabs.com/navigation.cfm?guide_id=2400 ,Yayın tarihi Nisan 10 2009, Erişim tarihi Kasım 11 2022.
  • 53. King, W. E., Barth, H. D., Castillo, V. M., Gallegos, G. F., Gibbs, J. W., Hahn, D. E., ... & Rubenchik, A. M., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., 214 (12), 2915-2925, 2014.
  • 54. Metelkova, J., Kinds, Y., Kempen, K., de Formanoir, C., Witvrouw, A., & Van Hooreweder, B., On the influence of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf., 23, 161-169, 2018.
  • 55. Simmons, J. C., Chen, X., Azizi, A., Daeumer, M. A., Zavalij, P. Y., Zhou, G., & Schiffres, S. N., Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel, Addit. Manuf., 32, 100996, 2020.

Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması

Yıl 2025, Cilt: 40 Sayı: 3, 1479 - 1494
https://doi.org/10.17341/gazimmfd.1424568

Öz

Eklemeli imalat (Eİ) teknolojileri dördüncü endüstri devrimine paralel olarak tüm dünyada yaygın şekilde kullanılmaya başlamıştır. Seçmeli lazer ergitme yöntemi (SLE) de parça imalatında birçok alanda en çok tercih edilen Eİ yöntemlerindendir. Kullanılan toz hammadde bakımından az atık malzeme, karmaşık geometrili parçaların nete yakın ölçülerde imal edilebilirliği, topoloji eniyileme süreçlerine uyumluluk gibi avantajlarından dolayı SLE teknolojilerin etkin şekilde uygulanmasına yönelik yeni cihaz geliştirilmesi çalışmaları her geçen gün daha da önem kazanmaktadır. Bu çalışmada özgün ön ısıtma ve çift taraflı serme özelliğine sahip toz serici barındıran bir seçmeli lazer ergitme cihazı geliştirilmiş ve tüm mekanik, elektronik ve elektro-optik ekipmanları ile birlikte imal edilmiştir. Bu cihaz bunun yanında iki lazer güç kaynağı ve tarayıcı kafaların odak uzunluğunun ayarlanabilmesini sağlayan bir konumlandırma mekanizması da barındırmaktadır. SLE cihazları için odak uzunluğu, matematiksel ifadelere göre seçilen lazer optik ekipmanların toz yatağı üzerinde oluşturması istenen lazer ışın çapını (teorik ışın çapı) ve gerçek bir imalat sırasında oluşan ışın çapını (deneysel ışın çapı) doğrudan etkilemektedir. Bu çalışma kapsamında cihazın kabiliyet ve performansının incelenip test edilmesi noktasında farklı güç değerlerinde lazer çizgileri oluşturulup detaylı şekilde incelenmiştir. Yapılan testler sonucunda 100 W ile 200 W aralığı için teorik ve deneysel ışın çapı en benzer olarak elde edilmiş ve diğer parametrelerde de artan güce oranla artan genişlik ve derinlikler literatür verileriyle uyumlu gözlemlenmiştir. Bununla birlikte denenen 3 farklı enerji yoğunluğu arasında 60 ve 90 J/mm^2 değerlerinde hem genişlikler hem de ergiyik havuzu derinlik değerleri etkin imalat yapılabilecek şekilde bulunmuştur.

Destekleyen Kurum

TÜBİTAK, SDÜBAP

Proje Numarası

217M499, FDK-7329

Teşekkür

Yazarlar 217M799 No’lu Proje ile bu çalışmanın yapılmasına destek verdiği için TUBİTAK’a ve FDK-7329 no’lu BAP projesi ile destek verdiği için SDÜ BAP Koordinatörlüğüne teşekkürlerini sunar.

Kaynakça

  • 1. Feygin M., Apparatus and method for forming an integral object from laminations, US patent 4,752,352, filed April 17th, 1987, published June 1st, 1988.
  • 2. Drstvensek I., Valentan B., Brajlih T., Strojnik T., Ihan H.N., Direct digital manufacturing as communication and implantation tool in medicine, US-Turkey Workshop On Rapid Technologies, 24, 75-81, 2009.
  • 3. Kamsky G.V., Kolomiets A.A., Popov V.V., Review Of The Main Producers Of 3D-Machines For Metals, Characteristics of The Machines, And Directions Of Development, Международный научно-исследовательский журнал, 8 (50), 48-54, 2015.
  • 4. Hauser, C., Childs, T. H. C., Dalgarno, K. W., Selective Laser Sintering of Stainless Steel 314S HC Processed Using Room Temperature Powder Beds, Proceedings of the Solid Freeform Fabrication Symposium, 273-280, 1999.
  • 5. Mercelis P, Kruth J. P, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping J., 12 (5) 254-265, 2006.
  • 6. Pohl H., Simchi A., Issa M., Dias H. C., Thermal stresses in direct metal laser sintering, Proceedings of the SFF Symposium, 366–372, 2001.
  • 7. Ciraud, P., Verfahren und Vorrichtung zur Herstellung beliebiger Gegenstände aus beliebigem schmelzbarem Material, German patent application DE 2263777, priority filed December 28th, 1971, published July 5th, 1973.
  • 8. Housholder, R., Molding Process, US patent 4,247,508, filed December 3rd, 1979, published January 27th, 1981.
  • 9. Hull, C., Method and apparatus for production of three-dimensional objects by stereolithography", US patent 4,575,330, filed Aug. 8th, 1984, publ. March 11th, 1986.
  • 10. Geiger, M. and Vollertsen, F. (Ed.), Laser Assisted Net Shape Engineering, Proceedings of the LANE '94 conference, Erlangen, October 12-14th, 1994.
  • 11. Nyrhilä, O. and Syrjälä, S., Manufacture of dimensionally precise pieces by sintering, Finnish patent 91725, priority filed April 7th, 1989, published December 5th, 1990.
  • 12. Eureka-Projekt E! 1184, Autosintering, 1994-95.
  • 13. Santos E. C., Shiomi M., Osakada K., Laoui T., Rapid manufacturing of metal components by laser forming, Int. J. Mach. Tools Manuf., 46, (12–13), 1459-1468, 2006.
  • 14. Herzog D., Seyda V., Wycisk E., Emmelmann C., Additive manufacturing of metals, Acta Materialia 117, 371-392, 2016.
  • 15. Lewandowski J. J., Seifi M., Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 46 (1), 151-186, 2016.
  • 16. Kamsky G.V., Kolomiets A.A., Popov V.V., Review Of The Main Producers Of 3d-Machines For Metals, Characteristics Of The Machines, And Directions Of Development, Cyberleninka, 8 (50), 48-54, 2016.
  • 17. EOS, Eos-Metal-Systems, https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems , Yayın tarihi Temmuz 10, 2010. Erişim tarihi Ekim 11, 2022.
  • 18. SLM, Products-and-Solutions/Machines, https://www.slm-solutions.com/products-and-solutions/machines ,Yayın tarihi Ocak 10, 2012. Erişim tarihi Kasım 11, 2022.
  • 19. Aggarwal, A., Patel, S., & Kumar, A., Selective laser melting of 316L stainless steel: physics of melting mode transition and its influence on microstructural and mechanical behavior, Jom, 71, 1105-1116, 2019.
  • 20. Tang, C., Tan, J. L., & Wong, C. H., A numerical investigation on the physical mechanisms of single track defects in selective laser melting. In. J. Heat Mass Transfer, 126, 957-968, 2018.
  • 21. Wayne E. King, Holly D. Barth, Victor M. Castillo, Gilbert F. Gallegos,John W. Gibbs, Douglas E. Hahn, Chandrika Kamath, Alexander M. Rubenchike, Observation of keyhole-mode laser melting in laser powder-bedfusion additive manufacturing, J.Mater.Process. Technol., 214, 2915–2925, 2014.
  • 22. Benarji, K., Jinoop, A. N., Ravikumar, Y., & Paul, C. P., Single track analysis of additive manufactured SS 316L based composites using powder bed fusion, Mater. Today Proc., 115, 156-161, 2023.
  • 23. Shi, W., Wang, P., Liu, Y., Hou, Y., & Han, G., Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness, Powder Technol, 360, 151-164, 2020.
  • 24. Mohanty, S., & Hattel, J. H., Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds, Proc. SPIE Int. Soc. Opt. Eng., 9738, 178-191, 2016.
  • 25. Kazemi, Z., Soleimani, M., Rokhgireh, H., & Nayebi, A., Melting pool simulation of 316L samples manufactured by Selective Laser Melting method, comparison with experimental results, In. J. Therm. Sci., 176, 107538, 2022.
  • 26. Ninpetch, P., Teenok, N., Kowitwarangkul, P., Mahathanabodee, S., Tongsri, R., & Ratanadecho, P., The Influence of Laser Parameters on the Melted Track and Microstructure of AISI 316L Fabricated by L-PBF Process, In Proceedings of the 8th Asia Pacific IIW International Congress, 39-43, 2019.
  • 27. Liu Y., Zhang M., Shi W., Ma Y., Yang J., Study on performance optimization of 316L stainless steel parts by High-Efficiency Selective Laser Melting, Opt.Laser Technol., 138,106872, 2021.
  • 28. A. Baumard, D. Ayrault, O. Fandeur, C. Bordreuil, F. Deschaux-Beaume, Numericaprediction of grain structure formation during laser powder bed fusion of 316 L stainless steel, Mater. Des., 199, 2021.
  • 29. Hu, Z., Nagarajan, B., Song, X., Huang, R., Zhai, W., & Wei, J., Formation of SS316L Single Tracks in Micro Selective Laser Melting: Surface, Geometry, and Defects, Adv. Mater. Sci. Eng., Article ID 9451406, 2019.
  • 30. Cheng, C. W., Liou, Y. W., Lee, A. C., & Tsai, M. C., Single Track of Selective Laser Melting Process: Modeling and Experimental Comparison, J.Laser Micro/Nanoeng., 14, 2, 2019.
  • 31. Lampeas G., Selective Laser Melting process simulation of open lattice cellular materials, MATEC Web of Conferences, 188, 03019, 2018.
  • 32. Dong, Z., Liu, Y., Wen, W., Ge, J., & Liang, J. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: Modeling and experimental approaches, Materials, 12 (1), 50, 2018.
  • 33. Zhuang, J. R., Lee, Y. T., Hsieh, W. H., & Yang, A. S., Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder, Opt. Laser Technol., 103, 59-76, 2018.
  • 34. Du, Y., You, X., Qiao, F., Guo, L., & Liu, Z., A model for predicting the temperature field during selective laser melting, Results Phys., 12, 52-60, 2019.
  • 35. Soundararajan, B., Sofia, D., Barletta, D., & Poletto, M., Review on modeling techniques for powder bed fusion processes based on physical principles, Addit. Manuf., 47, 102336, 2021.
  • 36. Kempen, K., Vrancken, B., Buls, S., Thijs, L., Van Humbeeck, J., & Kruth, J. P., Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manuf. Sci. Eng., 136 (6), 061026, 2014.
  • 37. Kempen, K., Vrancken, B., Thijs, L., Buls, S., Van Humbeeck, J., & Kruth, J.P., Lowering thermal gradients in selective laser melting by pre-heating the baseplate, Solid Freeform Fabrication Symposium Proceedings, 2013.
  • 38. Hagedorn Y., Towards finer structures: state of the art in selective laser melting (SLM), in: Precision fair, Veldhoven, Netherlands, 2013.
  • 39. Mertens, R., Vrancken, B., Holmstock, N., Kinds, Y., Kruth, J. P., & Van Humbeeck, J., Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, Physics Procedia, 83, 882-890, 2016.
  • 40. Kishore, V., Ajinjeru, C., Nycz, A., Post, B., Lindahl, J., Kunc, V., & Duty, C., Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components, Addit. Manuf., 14, 7-12, 2017.
  • 41. Vrancken, B., Buls, S., Kruth, J. P., & Humbeeck, J. V., Preheating of selective laser melted Ti6Al4V: microstructure and mechanical properties, In Proceedings of the 13th World Conference on Titanium, 1269-1277, 2016.
  • 42. Liu, Z. H., Zhang, D. Q., Chua, C. K., & Leong, K. F., Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact., 84, 72-80, 2013.
  • 43. He, K., & Zhao, X., 3D Thermal Finite Element Analysis of the SLM 316L Parts with Microstructural Correlations, Complexity, 2018.
  • 44. Zhang, Q., Xie, J., Gao, Z., London, T., Griffiths, D., & Oancea, V., A metallurgical phase transformation framework applied to SLM additive manufacturing processes, Mater. Des., 166, 107618, 2019.
  • 45. Paschotta, R., M2 Factor, Encycl. Laser Phys. Technol., https://www.rp-photonics.com/m2_factor.html , Yayın tarihi Ocak 10 2009, Erişim tarihi Nisan 11 2022.
  • 46. Wen, W., Zhang, X., Laser Beam Quality of Airy Beam in the Jet Engine Exhaust Induced Turbulence, Atmosphere, 14 (9), 1374, 2023.
  • 47. Gentec-eo. Quantifying the quality of a laser beam with the Beam Parameter Product and the M2 factor. https://www.gentec-eo.com/blog/beam-parameter-product-and-the-m2-factor#:~:text=The%20Beam%20Parameter%20Product%20is,but%20BPP%20varies%20with%20wavelength. Yayın tarihi Eylül 23, 2022. Erişim tarihi Ocak 15, 2024.
  • 48. Glover S. Beam Delivery: M2, BPP, Spot Size & Why You Should Care. https://www.laserchirp.com/2016/11/beam-delivery-m2-bpp-spot-size-why-you-should-care/. Yayın tarihi Kasım 8, 2016. Erişim tarihi Ocak 15, 2024.
  • 49. Eckop. Numerical Aperture and F-Number. https://www.eckop.com/resources/optics/numerical-aperture-and-f-number/. Yayın tarihi Kasım 15, 2019. Erişim Tarihi Ocak 18, 2024.
  • 50. Paschotta R. Numerical Aperture. https://www.rp-photonics.com/numerical_aperture.html. Yayın tarihi Mayıs 19, 2006. Erişim Tarihi Ocak 16, 2024.
  • 51. Edmundoptics, Fundamentals of lasers, https://www.edmundoptics.com/knowledge-center/application-notes/lasers/fundamentals-of-lasers/ , Yayın tarihi Eylül 10 2015, Erişim tarihi Kasım 11 2022.
  • 52. Thorlabs, laser guide, https://www.thorlabs.com/navigation.cfm?guide_id=2400 ,Yayın tarihi Nisan 10 2009, Erişim tarihi Kasım 11 2022.
  • 53. King, W. E., Barth, H. D., Castillo, V. M., Gallegos, G. F., Gibbs, J. W., Hahn, D. E., ... & Rubenchik, A. M., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., 214 (12), 2915-2925, 2014.
  • 54. Metelkova, J., Kinds, Y., Kempen, K., de Formanoir, C., Witvrouw, A., & Van Hooreweder, B., On the influence of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf., 23, 161-169, 2018.
  • 55. Simmons, J. C., Chen, X., Azizi, A., Daeumer, M. A., Zavalij, P. Y., Zhou, G., & Schiffres, S. N., Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel, Addit. Manuf., 32, 100996, 2020.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Tasarımı ve Makine Elemanları, İmalat Süreçleri ve Teknolojileri
Bölüm Makaleler
Yazarlar

Mehmet Alper Demiray 0000-0001-7191-3534

Bahri Şekerci 0000-0002-7304-0594

Mert Gürgen 0000-0002-0838-6564

Cengiz Kayacan 0000-0003-0993-243X

Cengiz Baykasoglu 0000-0001-7583-7655

Proje Numarası 217M499, FDK-7329
Erken Görünüm Tarihi 15 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 24 Ocak 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Demiray, M. A., Şekerci, B., Gürgen, M., Kayacan, C., vd. (2025). Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1479-1494. https://doi.org/10.17341/gazimmfd.1424568
AMA Demiray MA, Şekerci B, Gürgen M, Kayacan C, Baykasoglu C. Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması. GUMMFD. Nisan 2025;40(3):1479-1494. doi:10.17341/gazimmfd.1424568
Chicago Demiray, Mehmet Alper, Bahri Şekerci, Mert Gürgen, Cengiz Kayacan, ve Cengiz Baykasoglu. “Endüstriyel Bir Metal Lazer Ergitme cihazının özgün Olarak geliştirilmesi Ve performansının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 3 (Nisan 2025): 1479-94. https://doi.org/10.17341/gazimmfd.1424568.
EndNote Demiray MA, Şekerci B, Gürgen M, Kayacan C, Baykasoglu C (01 Nisan 2025) Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1479–1494.
IEEE M. A. Demiray, B. Şekerci, M. Gürgen, C. Kayacan, ve C. Baykasoglu, “Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması”, GUMMFD, c. 40, sy. 3, ss. 1479–1494, 2025, doi: 10.17341/gazimmfd.1424568.
ISNAD Demiray, Mehmet Alper vd. “Endüstriyel Bir Metal Lazer Ergitme cihazının özgün Olarak geliştirilmesi Ve performansının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (Nisan 2025), 1479-1494. https://doi.org/10.17341/gazimmfd.1424568.
JAMA Demiray MA, Şekerci B, Gürgen M, Kayacan C, Baykasoglu C. Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması. GUMMFD. 2025;40:1479–1494.
MLA Demiray, Mehmet Alper vd. “Endüstriyel Bir Metal Lazer Ergitme cihazının özgün Olarak geliştirilmesi Ve performansının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 3, 2025, ss. 1479-94, doi:10.17341/gazimmfd.1424568.
Vancouver Demiray MA, Şekerci B, Gürgen M, Kayacan C, Baykasoglu C. Endüstriyel bir metal lazer ergitme cihazının özgün olarak geliştirilmesi ve performansının araştırılması. GUMMFD. 2025;40(3):1479-94.