PPARGC1A Gen Polimorfizmi (rs8192678) ile Elit Sporcuların Yarışma Performansları Arasındaki İlişkinin Değerlendirilmesi
Yıl 2022,
Cilt: 27 Sayı: 4, 323 - 332, 28.10.2022
Celal Bulğay
,
Erdal Zorba
,
Onur Akman
,
Işık Bayraktar
,
Hasan Hüseyin Kazan
,
Mehmet Ali Ergun
,
Korkut Ulucan
Öz
PPARGC1A (rs8192678) gen polimorfizmi ve atletik performans arasıdaki ilişkiler konusunda sınırlı sayıda araştırma mevcuttur. Bu nedenle, bu çalışmada PPARGC1A genindeki rs8192678 polimorfizminin Türk elit atletizm sporcularının yarışma performansları ile olası ilişkisin araştırılması amaçlamaktadır. Çalışmaya 18-35 yaşları arasında toplam 60 elit sporcu (31 sprint/güç ve 29 dayanıklılık) ve 20 kontrol/sedanter gönüllü olarak katıldı. Atletlerin kişisel en iyi (PB)/yarışma performans düzeylerini belirlemek için Uluslararası Atletizm Federasyonları Birliği (IAAF) puan ölçeği kullanıldı. Tüm ekzom dizilimi (WES), katılımcıların kanından izole edilen genomik DNA tarafından gerçekleştirildi. rs8192678 polimorfizmi ile PB arasındaki ilişki, cinsiyet ve spor deneyimi ayarlaması ile tek yönlü kovaryans analizi (ANCOVA) ile incelendi. Bulgulara göre grup içi ve gruplar arasında, G/G, G/A ve A/A genotip dağılımları arasında anlamlı bir farklılık tespit edilmemiştir (p>0.05). Sonuç olarak, PPARGC1A rs8192678 polimorfizmi ile sporcuların performansı arasında anlamlı hiçbir ilişki tespit edilmemiştir. Ancak, yapılan araştırma hakkında daha net bilgi verebilmek için daha fazla katılımcı ile yapılması önerilir.
Destekleyen Kurum
Gazi Üniversitesi
Proje Numarası
TCD-2021-7116
Kaynakça
- 1. Ahmetov, I., Popov, V., Mozhayskaya, I., Missina, S., Astratenkova, I., Vinogradova, O. & et al. (2007). Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross Fiziol Zhurnal Im I M Sechenova, 93(8), 837–43.
- 2. Ahmetov, I. I., Druzhevskaya, A. M., Lyubaeva, E. V., Popov, D. V., Vinogradova, O., & Williams, A. G. (2011). The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Experimental Physiology, 96(12), 1302–10.
- 3. Attie, A. D., & Kendziorski, C. M. (2003). PGC-1 alphaat the crossroads of type 2 diabetes. Nature Genetic, 34(3), 244–5.
- 4. Bulğay, C., & Zorba, E. (2020). Genetik ve atletik performans: elit atletler üzerine bir araştırma. Ankara: Gazi Kitapevi.
- 5. Bulğay, C., Çetin, E., Orhan, Ö., & Ergün M. A. (2020). The effects of the ACTN3 and ACE genes on the sportive performance of athletes. İnönü Üniversitesi Beden Eğitimi ve Spor Bilimleri Dergisi, 7(1), 1–12.
- 6. Chen, Y., Wang, D., Yan, P., Yan, S., Chang, Q., & Cheng, Z. (2019). Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biology of Sport, 36(4), 301–9.
- 7. De Moor, M. H., Spector, T. D., Cherkas, L. F., Falchi, M., Hottenga, J. J., Boomsma, D. I. & et al. (2007). Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Humman Genetics, 10(6), 812–20.
- 8. Egan, B., & Zierath, R. J. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17(2), 162–84.
- 9. Esterbauer, H., Oberkofler, H., Krempler, F., & Patsch, W. (1999). Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics, 62(1), 98–102.
- 10. Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sport Medicine, 43(9), 803–17.
- 11. Eynon, N., Meckel, Y., Sagiv, M., Yamin, C., Amir, R., Sagiv, M. & et al. (2010). Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scandinavian Journal of Mededicine & Science in Sports, 20(e), 145–50.
- 12. Eynon, N., Mecker, Y., Jorge, Alves, A., Yamin, C., Sagiv, M., Goldhammer, E., & et al. (2009). Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Experimental Physiology, 94(11), 1147–52.
- 13. Gineviciene, V., Jakaitiene, A., Aksenov, M., Aksenova, A., Druzhevskaya, A., Astratenkova, I. & et al. (2016). Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biology of Sport, 33(3), 199–206.
- 14. Ginevičienė, V., Pranckevičienė, E., Milašius, K., & Kučinskas, V. (2011). Gene variants related to the power performance of the Lithuanian athletes. Central European Journal of Biology, 6(1), 48–57.
- 15. Jin, H., Hwang, I., Kim, K., Cho, H., & Kim, W. (2016). Is there a relationship between PPARD T294C/PPARGC1A Gly482Ser variations and physical endurance performance in the Korean population? Genes Genom, 38, 389–95.
- 16. Kline, R. (2011). Methodology in the Social Sciences. Principles and practice of structural equation modeling. 3. New York, NY, US: Guilford Press.
- 17. Liang, H., & Ward, W. F. (2016). PGC-1alpha: a key regulator of energy metabolism. Advance in Physiology Education, 30(4), 145–51.
- 18. Ling, C., Del, G., Lupi, R., Rönn, T., Granhall, C., & Luthmna, H. (20008). Epigenetic regulation of PPARG- C1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia, 51, 615–22.
- 19. Ling, C., Paulsen, P., Carlsson, E., Ridderstrale, M., Almgren, P., & Wojtaszewski, J. (2004). Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC- 1beta gene expression in twins. The Journal of Clinical of Investigation, 114, 1518–26.
- 20. Macıejewska, A., Sawczuk, M., Cieszczyk, P., Mozhayskaya, I., & Ahmetov, I. (2013). The PPARGC1A gene Gly482Ser in Polish and Russian athletes. Journal of Sports Science, 30(1), 101–13.
- 21. Peplonska, B., Adamczyk, J., Siewierski, M., Safranow, K., Maruszak, A., Sozanski, H. & et al. (2017). Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scandinavian Journal of Mededicine & Science in Sports, 27, 788–800.
- 22. Puigserver, P., & Spiegelman M. B. (2003). Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocrine Reviews, 24(1), 78–90.
- 23. Sole, X., Guino, E., Valls, J., & Iniesta, R. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics, 22(15), 1928–1929.
- 24. Spiriev, B. (2014). IAAF Scoring Tables of Athletics, 368.
- 25. Stefan, N., Thamer, C., Staiger, H., Machicao, F., Mchann, J., Schick, F. & et al. (2007). Genetic Variations in PPARD and PPARGC1A Determine Mitochondrial Function and Change in Aerobic Physical Fitness and Insulin Sensitivity during Lifestyle Intervention. The Journal Clinical Endocrinology Metabolism, 92(5), 1827–33.
- 26. Tural, E., Kara, N., Agaoglu, S.A. et al. (2014). PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep, 41, 5799–5804.
- 27. Van der Auwera, G., Carneiro, M., Harl, C., Poplin, R., Del Angel, G., Levy-Moonshine A. & et al. (2013). From fastq data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43.
- 28. Yıldırım, D. S., Erdoğan, M., Dalip, M., Bulğay, C., & Cirit, M. (2022). Evaluation of the soldier's physical fitness test results (strength endurance) ın relation to genotype: longitudinal study. Egypt J Med Hum Genet, 23(114), 2-9.
- 29. Wang, K., Li, M., & Kakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Ressearch, 38(16), e168.
Evaluation of Association between PPARGC1A Gene Polymorphism and Competitive Performance of Elite Athletes
Yıl 2022,
Cilt: 27 Sayı: 4, 323 - 332, 28.10.2022
Celal Bulğay
,
Erdal Zorba
,
Onur Akman
,
Işık Bayraktar
,
Hasan Hüseyin Kazan
,
Mehmet Ali Ergun
,
Korkut Ulucan
Öz
Limited number of researches exist on the relationship between PPARGC1A gene polymorphism (rs8192678) and affects the athletic performance. Thus, the present study aims to decipher any possible association of the rs8192678 polymorphism in the PPARGC1A gene with the competitive performances of Turkish elite track and field athletes. A total of 60 elite athletes (31 sprint/power and 29 endurance) and 20 control/sedentary with the ages of 18-35 voluntarily participated in the study. The International Association of Athletics Federations (IAAF) score scale was used to determine the performance levels of the personal best (PB) of the athletes. Whole exome sequencing (WES) was performed by the genomic DNA sample isolated from blood of the participants. The association between rs8192678 polymorphism and PB was examined by one-way analysis of covariance (ANCOVA) with the adjustment of sex and sport experience. According to the results, there were not any significant deviation between the wild-type (G/G), heterozygote (G/A) and homozygote (A/A) genotypes within and between the groups (p>0.05). Our results underlined that there were not any significances for association of rs8192678 polymorphism with PBs within the groups of the sprint/power and endurance athletes. However, it is recommended that similar studies be conducted with more participants to provide clearer information about the research.
Proje Numarası
TCD-2021-7116
Kaynakça
- 1. Ahmetov, I., Popov, V., Mozhayskaya, I., Missina, S., Astratenkova, I., Vinogradova, O. & et al. (2007). Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross Fiziol Zhurnal Im I M Sechenova, 93(8), 837–43.
- 2. Ahmetov, I. I., Druzhevskaya, A. M., Lyubaeva, E. V., Popov, D. V., Vinogradova, O., & Williams, A. G. (2011). The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Experimental Physiology, 96(12), 1302–10.
- 3. Attie, A. D., & Kendziorski, C. M. (2003). PGC-1 alphaat the crossroads of type 2 diabetes. Nature Genetic, 34(3), 244–5.
- 4. Bulğay, C., & Zorba, E. (2020). Genetik ve atletik performans: elit atletler üzerine bir araştırma. Ankara: Gazi Kitapevi.
- 5. Bulğay, C., Çetin, E., Orhan, Ö., & Ergün M. A. (2020). The effects of the ACTN3 and ACE genes on the sportive performance of athletes. İnönü Üniversitesi Beden Eğitimi ve Spor Bilimleri Dergisi, 7(1), 1–12.
- 6. Chen, Y., Wang, D., Yan, P., Yan, S., Chang, Q., & Cheng, Z. (2019). Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biology of Sport, 36(4), 301–9.
- 7. De Moor, M. H., Spector, T. D., Cherkas, L. F., Falchi, M., Hottenga, J. J., Boomsma, D. I. & et al. (2007). Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Humman Genetics, 10(6), 812–20.
- 8. Egan, B., & Zierath, R. J. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17(2), 162–84.
- 9. Esterbauer, H., Oberkofler, H., Krempler, F., & Patsch, W. (1999). Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics, 62(1), 98–102.
- 10. Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sport Medicine, 43(9), 803–17.
- 11. Eynon, N., Meckel, Y., Sagiv, M., Yamin, C., Amir, R., Sagiv, M. & et al. (2010). Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scandinavian Journal of Mededicine & Science in Sports, 20(e), 145–50.
- 12. Eynon, N., Mecker, Y., Jorge, Alves, A., Yamin, C., Sagiv, M., Goldhammer, E., & et al. (2009). Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Experimental Physiology, 94(11), 1147–52.
- 13. Gineviciene, V., Jakaitiene, A., Aksenov, M., Aksenova, A., Druzhevskaya, A., Astratenkova, I. & et al. (2016). Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biology of Sport, 33(3), 199–206.
- 14. Ginevičienė, V., Pranckevičienė, E., Milašius, K., & Kučinskas, V. (2011). Gene variants related to the power performance of the Lithuanian athletes. Central European Journal of Biology, 6(1), 48–57.
- 15. Jin, H., Hwang, I., Kim, K., Cho, H., & Kim, W. (2016). Is there a relationship between PPARD T294C/PPARGC1A Gly482Ser variations and physical endurance performance in the Korean population? Genes Genom, 38, 389–95.
- 16. Kline, R. (2011). Methodology in the Social Sciences. Principles and practice of structural equation modeling. 3. New York, NY, US: Guilford Press.
- 17. Liang, H., & Ward, W. F. (2016). PGC-1alpha: a key regulator of energy metabolism. Advance in Physiology Education, 30(4), 145–51.
- 18. Ling, C., Del, G., Lupi, R., Rönn, T., Granhall, C., & Luthmna, H. (20008). Epigenetic regulation of PPARG- C1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia, 51, 615–22.
- 19. Ling, C., Paulsen, P., Carlsson, E., Ridderstrale, M., Almgren, P., & Wojtaszewski, J. (2004). Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC- 1beta gene expression in twins. The Journal of Clinical of Investigation, 114, 1518–26.
- 20. Macıejewska, A., Sawczuk, M., Cieszczyk, P., Mozhayskaya, I., & Ahmetov, I. (2013). The PPARGC1A gene Gly482Ser in Polish and Russian athletes. Journal of Sports Science, 30(1), 101–13.
- 21. Peplonska, B., Adamczyk, J., Siewierski, M., Safranow, K., Maruszak, A., Sozanski, H. & et al. (2017). Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scandinavian Journal of Mededicine & Science in Sports, 27, 788–800.
- 22. Puigserver, P., & Spiegelman M. B. (2003). Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocrine Reviews, 24(1), 78–90.
- 23. Sole, X., Guino, E., Valls, J., & Iniesta, R. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics, 22(15), 1928–1929.
- 24. Spiriev, B. (2014). IAAF Scoring Tables of Athletics, 368.
- 25. Stefan, N., Thamer, C., Staiger, H., Machicao, F., Mchann, J., Schick, F. & et al. (2007). Genetic Variations in PPARD and PPARGC1A Determine Mitochondrial Function and Change in Aerobic Physical Fitness and Insulin Sensitivity during Lifestyle Intervention. The Journal Clinical Endocrinology Metabolism, 92(5), 1827–33.
- 26. Tural, E., Kara, N., Agaoglu, S.A. et al. (2014). PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep, 41, 5799–5804.
- 27. Van der Auwera, G., Carneiro, M., Harl, C., Poplin, R., Del Angel, G., Levy-Moonshine A. & et al. (2013). From fastq data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43.
- 28. Yıldırım, D. S., Erdoğan, M., Dalip, M., Bulğay, C., & Cirit, M. (2022). Evaluation of the soldier's physical fitness test results (strength endurance) ın relation to genotype: longitudinal study. Egypt J Med Hum Genet, 23(114), 2-9.
- 29. Wang, K., Li, M., & Kakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Ressearch, 38(16), e168.