Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Koster için Yardımcı Güç Kaynağı Olarak Katı Oksit Yakıt Pilinin Termodinamik, Ekonomik ve Çevresel Analizi

Yıl 2021, Sayı: 220, 86 - 107, 31.12.2021
https://doi.org/10.54926/gdt.979252

Öz

Çevre ve dünya iklimleri açısından karbondioksit (CO2) emisyonlarının azaltılması oldukça önemli olup Uluslararası Denizcilik Örgütü (IMO) de son yıllarda uluslararası denizcilik faaliyetlerinden kaynaklanan sera gazı emisyonlarının sınırlandırılması yönünde çalışmalarını hızlandırmıştır. Gemilerden salınan CO2 emisyonlarının azaltılması için bugüne kadar çok çeşitli yöntemler ve teknolojiler önerilmiştir. Bu teknolojilerden birisi olan yakıt pilleri kullanılan yakıta bağlı olarak CO2 emisyonlarını sıfıra kadar düşürebilmektedir. Bu çalışmada bir koster için yardımcı güç kaynağı olarak katı oksit yakıt pili (SOFC) kullanımının elektrokimyasal ve termodinamik olarak modellenmesi ve Aspen HYSYS yazılımında simülasyonu gerçekleştirilmiştir. Alternatif CO2 emisyon azaltma yöntemleri ile fizibilite ve maliyet açısından daha etkin bir karşılaştırma yapabilmek için birim CO2 azaltma maliyeti üzerinden sistemin ekonomik analizi gerçekleştirilmiştir. Ekonomik analiz, çalışmada kullanılan geminin referans yardımcı güç sisteminin bu çalışmada önerilen SOFC güç sistemi ile değiştirilmesinden kaynaklanan maliyet artışı ve azaltılan CO2 emisyon miktarı değerlerinden yola çıkılarak yapılmıştır. Kurulan model üzerinden yakıt pilinin farklı çalışma sıcaklıkları ve akım yoğunluklarının sistemin maliyeti üzerine etkileri incelenmiştir. Ayrıca gemiler için yapılan çalışmalarda ilk defa yakıt pili kimyasal bozulmasının pil potansiyeli düşüşündeki etkisi bu çalışmada dikkate alınmıştır. Yapılan parametrik çalışma sonucunda incelenen koşullarda akım yoğunluğunun seçimi birim CO2 azaltma maliyetini %10.0’a, sıcaklığın seçimi ise birim CO2 azaltma maliyetini %26.1’e kadar azaltmıştır. Maliyeti minimize eden çalışma koşullarında sistemin kimyasal bozulma öncesi %51.1 gibi yüksek bir termal verime ve 302.2 USD/ton CO2 azaltma maliyetine sahip olduğu hesaplanmıştır. Belirlenen koşulda SOFC güç sisteminin toplam maliyetinin %65’ini kullanılan yakıt olan hidrojenin oluşturduğu görülmüştür. Kimyasal bozulma etkisiyle verim yakıt pili ömrü sonunda ortalama %43.6 olarak elde edilmiş olup bu verim referans yardımcı güç sisteminden %20.7 daha fazladır. Referans koşullardaki gemiye göre CO2 emisyonları çalışmada önerilen yardımcı güç sistemi ile %24.3 kadar azalmıştır.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Ahn, J., Park, S.H., Noh, Y., Choi, B. Il, Ryu, J., Chang, D. ve Brendstrup, K.L.M. (2018). Performance and availability of a marine generator-solid oxide fuel cell-gas turbine hybrid system in a very large ethane carrier. Journal of Power Sources, 399, 199–206.
  • Aijjou, A., Raihani, A., Mohammedia, E. De ve Grid, S. (2019). Study on container ship energy consumption. Paper presented at the 8th Energy and Sustainability conference, Coimbra, Portugal, July 3-5, 2019
  • Anyenya, G.A. (2017). Solid-Oxide Fuel Cells for Unconventional Oil and Gas Production, Colorado School of Mines, Mechanical Engineering, Doctor of Philosophy.
  • Armi, C.D., Micheli, D. ve Taccani, R. (2021). Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. International Journal of Hydrogen Energy, 46(26), 13878-13897.
  • Aspentech Inc, (2015). Aspen HYSYS V8.8.
  • Baldi, F., Moret, S., Tammi, K. ve Maréchal, F. (2020). The role of solid oxide fuel cells in future ship energy systems. Energy, 194.
  • Bassam, A.M., Phillips, A.B., Turnock, S.R. ve Wilson, P.A. (2017). Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. International Journal of Hydrogen Energy, 42(1), 623–635.
  • Birol, F. (2019). The Future of Hydrogen: Seizing Today’s Opportunities, IEA Report prepared for the G20.
  • Buhaug, Ø., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J.J., Wu, W. ve Yoshida, K. (2009). Second IMO GHG Study 2009.
  • Buli, N. ve Abnett, K. (2021). Europe’s carbon price tops 40 euros for first time,. Reuters. https://www.reuters.com/article/us-eu-carbontrading-idUSKBN2AB2BT [Online] [Erişim 26.04.2021] Bureau Veritas, 2021. BV Fleet. https://marine-offshore.bureauveritas.com/bv-fleet/#/bv-fleet/ship-adv [Online] [Erişim 26.04.2021]
  • Bureau Veritas, (2020). Rules for the Classification of Steel Ships, Part C-Machinery, Electricity, Automation and Fire Protection, Paris.
  • Choi, C.H., Yu, S., Han, I.S., Kho, B.K., Kang, D.G., Lee, H.Y., Seo, M.S., Kong, J.W., Kim, G., Ahn, J.W., Park, S.K., Jang, D.W., Lee, J.H. ve Kim, M. (2016). Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. International Journal of Hydrogen Energy, 41(5), 3591–3599.
  • Costa, A.N., Neves, M.V.S., Cruz, M.E. ve Vieira, L.S. (2011). Maximum profit cogeneration plant - MPCP: System modeling, optimization problem formulation, and solution. Journal of Brazilian Society Mechanical Sciences and Engineering, 33(1), 58–66.
  • Dall’Armi, C., Micheli, D. ve Taccani, R. (2021). Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. International Journal of Hydrogen Energy, 46(26), 13878-13897.
  • De-Troya, J.J., Álvarez, C., Fernández-Garrido, C. ve Carral, L. (2016). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 41(4), 2853–2866.
  • Dogdibegovic, E., Wang, R., Lau, G. Y., ve Tucker, M. C. (2019). High performance metal-supported solid oxide fuel cells with infiltrated electrodes. Journal of Power Sources, 410, 91–98.
  • Evrin, R.A. ve Dincer, I. (2019). Thermodynamic analysis and assessment of an integrated hydrogen fuel cell system for ships. International Journal of Hydrogen Energy, 44(13), 6919–6928.
  • Feenstra, M., Monteiro, J., van den Akker, J.T., Abu-Zahra, M.R.M., Gilling, E. ve Goetheer, E. (2019). Ship-based carbon capture onboard of diesel or LNG-fuelled ships. International Journal of Greenhouse Gas Control, 85, 1–10.
  • Fioriti, D., Giglioli, R., Poli, D., Lutzemberger, G., Vanni, A. ve Salza, P. (2017). Optimal sizing of a mini-grid in developing countries, taking into account the operation of an electrochemical storage and a fuel tank, Paper presented at the 6th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, June, 2017.
  • Ganjehkaviri, A. ve Jaafar, M.N.M. (2014). Energy analysis and multi-objective optimization of an internal combustion engine-based CHP system for heat recovery. Entropy, 16(11), 5633–5653.
  • Giap, V.T., Lee, Y.D., Kim, Y.S., Ahn, K.Y., Kim, D.H. ve Lee, J. Il (2020). System simulation and exergetic evaluation of hybrid propulsion system for crude oil tanker: A hybrid of solid-oxide fuel cell and gas engine. Energy Conversion and Management, 223, 113265.
  • Gielen, D. ve Taibi, E. (2019). Hydrogen’s future: reducing costs, finding markets. https://energypost.eu/hydrogens-future-reducing-costs-finding-markets/[Online][Erişim 26.04.2021].
  • Giers, M., Jaworska, L. ve Antas, L. (2020). Global Hydrogen Market Who Will Dominate the Game? Warsaw.
  • Güler, E. ve Ergin, S. (2021). An Investigation on the Solvent Based Carbon Capture and Storage System by Process Modeling and Comparisons with Another Carbon Control Methods for Different Ships. International Journal of Greenhouse Gas Control, 110, September 2021, 103438.
  • Hackl, R. ve Harvey, S., (2013). Identification, cost estimation and economic performance of common heat recovery systems for the chemical cluster in Stenungsund, Chalmers University of Technology, Department of Energy and Environment, Project Report.
  • International Maritime Organization, (2018). Adoption of the initial IMO strategy on reduction of GHG emissions from ships and existing IMO activity related to reducing GHG emissons in the shipping sector.
  • Lloyd’s Register ve UMAS, (2018). Zero-Emission Vessels 2030. How do we get there. Lloyd's Register Group Limited and UMAS.
  • Luo, X. ve Wang, M. (2017). Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Applied Energy, 195, 402–413.
  • Man Energy Solutions, (2018). https://marine.man-es.com/two-stroke/ceas [Online] [Erişim 26.04.2021].
  • Marine Environment Protection Committee, (2020). Report of the Marine Environment Protection Committee on its Seventy Fifth Session.
  • Marine Insight, (2020). EU Parliament Votes To Make Shipping Pay For CO2 Emissions. https://www.marineinsight.com/shipping-news/eu-parliament-votes-to-make-shipping-pay-for-co2-emissions/#:~:text=Shipping is the only sector,€24 billion a year. [Online] [Erişim 26.04.2021].
  • MTU-solutions, 2019. Marine Diesel Engine S60 for vessels with unrestricted continuous operation. https://www.mtu-solutions.com/content/dam/mtu/products/defense/marine-and-offshore-service-and-supply/main-propulsion/mtu-series 60/3231191_Marine_spec_S60_1A.pdf. [Online] [Erişim 26.04.2021]
  • Nordin, A. ve Majid, M.A.A., (2016). Parametric study on the effects of pinch and approach points on heat recovery steam generator performance at a district cooling system. Journal of Mechanical Engineering and Sciences, 10 (2), 2134–2144.
  • Ouyang, T., Zhao, Z., Lu, J., Su, Z., Li, J. ve Huang, H. (2020). Waste heat cascade utilisation of solid oxide fuel cell for marine applications. Journal of Cleaner Production, 275, 124133.
  • Park, S., Vohs, J.M. ve Gorte, R.J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404 (6775), 265–267.
  • Park, S.H., Lee, Y.D. ve Ahn, K.Y. (2014). Performance analysis of an SOFC/HCCI engine hybrid system: System simulation and thermo-economic comparison. International Journal of Hydrogen Energy, 39 (4), 1799–1810.
  • Parks, G., Boyd, R., Cornish, J. ve Remick, R. (2014). Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration, International Renewable Energy Laboratory, Technical Report.
  • Peng, D. ve Robinson, D.B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.
  • Sapra, H., Stam, J., Reurings, J., van Biert, L., van Sluijs, W., de Vos, P., Visser, K., Vellayani, A.P. ve Hopman, H. (2021). Integration of solid oxide fuel cell and internal combustion engine for maritime applications. Applied Energy, 281, 115854.
  • Sohal, M.S. (2009). Degradation in solid oxide cells during high temperature electrolysis, Idaho National Laboratory, Technical Report.
  • Shirmohammadi, R., Aslani, A., Ghasempour, R., Romeo, L. M., ve Petrakopoulou, F. (2021). Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant. Journal of Thermal Analysis and Calorimetry, 145(3), 1585–1597.
  • Ship&Bunker, (2021). Rotterdam Bunker Prices. https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#ULSFO. [Online] [Erişim 02.06.2021]
  • Van Biert, L., Godjevac, M., Visser, K. ve Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345–364.
  • Woodyard, D., (2009). Pounder’s marine diesel engines and gas turbines. Butterworth-Heinemann.
  • Wu, P. ve Bucknall, R. (2020). Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry. International Journal of Hydrogen Energy, 45(4), 3193–3208. Yan, Z., He, A., Hara, S. ve Shikazono, N. (2019). Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms. Energy Conversion Management, 198, 111916.
  • Yonekura, T., Yachikawa, Y., Yoshizuma, T., Shiratori, Y., Ito, K. ve Sasaki, K. (2011). Exchange Current Density of Solid Oxide Fuel Cell Electrodes. ECS Transactions, 35(1), 1007–1014.
  • Zhang, X., Chan, S.H., Li, G., Ho, H.K., Li, J. ve Feng, Z. (2010). A review of integration strategies for solid oxide fuel cells. Journal of Power Sources, 195(3), 685–702.

Thermodynamic, Economic and Environmental Analysis of a Solid Oxide Fuel Cell as Auxiliary Power Source for a Coaster

Yıl 2021, Sayı: 220, 86 - 107, 31.12.2021
https://doi.org/10.54926/gdt.979252

Öz

Reducing carbon dioxide (CO2) emissions is crucial in terms of environment and world climates, and the International Maritime Organization (IMO) has accelerated its works to limit greenhouse gas emissions released from international maritime activities in recent years. Various methods and technologies have been proposed to reduce CO2 emissions from ships until nowadays. Fuel cells are one of these technologies and they can reduce CO2 emissions to zero, depending on the fuel used. In this study, electrochemical and thermodynamic modeling of the solid oxide fuel cell (SOFC) as an auxiliary power source for a coaster and simulation in Aspen HYSYS software is carried out. In order to make a more effective comparison in terms of feasibility and cost with alternative CO2 emission reduction methods, an economic analysis of the system is made over unit CO2 reduction cost. The economic analysis is carried out based on the cost increase and reduced CO2 emission values resulting from the replacement of the reference auxiliary power system of the ship used with the SOFC power system proposed in this study. The effects of different operating temperatures and current densities of the fuel cell on the cost of the system are investigated using the model established. In addition, the effect of fuel cell degradation on cell potential reduction is taken into account in this study for the first time in studies conducted for ships. As a result of the parametric study, the selection of the current density in the conditions examined reduces the unit CO2 reduction cost up to 10.0% and the selection of the temperature reduces the unit CO2 reduction cost up to 26.1%. It has been calculated that the system has high thermal efficiency of 51.1% and a reduction cost of 302.2 USD/ton CO2 under operating conditions that minimize costs. It has been calculated that 65% of the total cost of the SOFC power system under the specified condition is hydrogen as the fuel used. The efficiency with the degradation effect is calculated as 43.6% on average at the end of the fuel cell life, and this efficiency is 20.7% greater than the reference auxiliary power system. Compared to the ship in the reference conditions, CO2 emissions decreased by 24.3% with the auxiliary power system proposed in the study.

Proje Numarası

-

Kaynakça

  • Ahn, J., Park, S.H., Noh, Y., Choi, B. Il, Ryu, J., Chang, D. ve Brendstrup, K.L.M. (2018). Performance and availability of a marine generator-solid oxide fuel cell-gas turbine hybrid system in a very large ethane carrier. Journal of Power Sources, 399, 199–206.
  • Aijjou, A., Raihani, A., Mohammedia, E. De ve Grid, S. (2019). Study on container ship energy consumption. Paper presented at the 8th Energy and Sustainability conference, Coimbra, Portugal, July 3-5, 2019
  • Anyenya, G.A. (2017). Solid-Oxide Fuel Cells for Unconventional Oil and Gas Production, Colorado School of Mines, Mechanical Engineering, Doctor of Philosophy.
  • Armi, C.D., Micheli, D. ve Taccani, R. (2021). Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. International Journal of Hydrogen Energy, 46(26), 13878-13897.
  • Aspentech Inc, (2015). Aspen HYSYS V8.8.
  • Baldi, F., Moret, S., Tammi, K. ve Maréchal, F. (2020). The role of solid oxide fuel cells in future ship energy systems. Energy, 194.
  • Bassam, A.M., Phillips, A.B., Turnock, S.R. ve Wilson, P.A. (2017). Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. International Journal of Hydrogen Energy, 42(1), 623–635.
  • Birol, F. (2019). The Future of Hydrogen: Seizing Today’s Opportunities, IEA Report prepared for the G20.
  • Buhaug, Ø., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J.J., Wu, W. ve Yoshida, K. (2009). Second IMO GHG Study 2009.
  • Buli, N. ve Abnett, K. (2021). Europe’s carbon price tops 40 euros for first time,. Reuters. https://www.reuters.com/article/us-eu-carbontrading-idUSKBN2AB2BT [Online] [Erişim 26.04.2021] Bureau Veritas, 2021. BV Fleet. https://marine-offshore.bureauveritas.com/bv-fleet/#/bv-fleet/ship-adv [Online] [Erişim 26.04.2021]
  • Bureau Veritas, (2020). Rules for the Classification of Steel Ships, Part C-Machinery, Electricity, Automation and Fire Protection, Paris.
  • Choi, C.H., Yu, S., Han, I.S., Kho, B.K., Kang, D.G., Lee, H.Y., Seo, M.S., Kong, J.W., Kim, G., Ahn, J.W., Park, S.K., Jang, D.W., Lee, J.H. ve Kim, M. (2016). Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. International Journal of Hydrogen Energy, 41(5), 3591–3599.
  • Costa, A.N., Neves, M.V.S., Cruz, M.E. ve Vieira, L.S. (2011). Maximum profit cogeneration plant - MPCP: System modeling, optimization problem formulation, and solution. Journal of Brazilian Society Mechanical Sciences and Engineering, 33(1), 58–66.
  • Dall’Armi, C., Micheli, D. ve Taccani, R. (2021). Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. International Journal of Hydrogen Energy, 46(26), 13878-13897.
  • De-Troya, J.J., Álvarez, C., Fernández-Garrido, C. ve Carral, L. (2016). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, 41(4), 2853–2866.
  • Dogdibegovic, E., Wang, R., Lau, G. Y., ve Tucker, M. C. (2019). High performance metal-supported solid oxide fuel cells with infiltrated electrodes. Journal of Power Sources, 410, 91–98.
  • Evrin, R.A. ve Dincer, I. (2019). Thermodynamic analysis and assessment of an integrated hydrogen fuel cell system for ships. International Journal of Hydrogen Energy, 44(13), 6919–6928.
  • Feenstra, M., Monteiro, J., van den Akker, J.T., Abu-Zahra, M.R.M., Gilling, E. ve Goetheer, E. (2019). Ship-based carbon capture onboard of diesel or LNG-fuelled ships. International Journal of Greenhouse Gas Control, 85, 1–10.
  • Fioriti, D., Giglioli, R., Poli, D., Lutzemberger, G., Vanni, A. ve Salza, P. (2017). Optimal sizing of a mini-grid in developing countries, taking into account the operation of an electrochemical storage and a fuel tank, Paper presented at the 6th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, June, 2017.
  • Ganjehkaviri, A. ve Jaafar, M.N.M. (2014). Energy analysis and multi-objective optimization of an internal combustion engine-based CHP system for heat recovery. Entropy, 16(11), 5633–5653.
  • Giap, V.T., Lee, Y.D., Kim, Y.S., Ahn, K.Y., Kim, D.H. ve Lee, J. Il (2020). System simulation and exergetic evaluation of hybrid propulsion system for crude oil tanker: A hybrid of solid-oxide fuel cell and gas engine. Energy Conversion and Management, 223, 113265.
  • Gielen, D. ve Taibi, E. (2019). Hydrogen’s future: reducing costs, finding markets. https://energypost.eu/hydrogens-future-reducing-costs-finding-markets/[Online][Erişim 26.04.2021].
  • Giers, M., Jaworska, L. ve Antas, L. (2020). Global Hydrogen Market Who Will Dominate the Game? Warsaw.
  • Güler, E. ve Ergin, S. (2021). An Investigation on the Solvent Based Carbon Capture and Storage System by Process Modeling and Comparisons with Another Carbon Control Methods for Different Ships. International Journal of Greenhouse Gas Control, 110, September 2021, 103438.
  • Hackl, R. ve Harvey, S., (2013). Identification, cost estimation and economic performance of common heat recovery systems for the chemical cluster in Stenungsund, Chalmers University of Technology, Department of Energy and Environment, Project Report.
  • International Maritime Organization, (2018). Adoption of the initial IMO strategy on reduction of GHG emissions from ships and existing IMO activity related to reducing GHG emissons in the shipping sector.
  • Lloyd’s Register ve UMAS, (2018). Zero-Emission Vessels 2030. How do we get there. Lloyd's Register Group Limited and UMAS.
  • Luo, X. ve Wang, M. (2017). Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Applied Energy, 195, 402–413.
  • Man Energy Solutions, (2018). https://marine.man-es.com/two-stroke/ceas [Online] [Erişim 26.04.2021].
  • Marine Environment Protection Committee, (2020). Report of the Marine Environment Protection Committee on its Seventy Fifth Session.
  • Marine Insight, (2020). EU Parliament Votes To Make Shipping Pay For CO2 Emissions. https://www.marineinsight.com/shipping-news/eu-parliament-votes-to-make-shipping-pay-for-co2-emissions/#:~:text=Shipping is the only sector,€24 billion a year. [Online] [Erişim 26.04.2021].
  • MTU-solutions, 2019. Marine Diesel Engine S60 for vessels with unrestricted continuous operation. https://www.mtu-solutions.com/content/dam/mtu/products/defense/marine-and-offshore-service-and-supply/main-propulsion/mtu-series 60/3231191_Marine_spec_S60_1A.pdf. [Online] [Erişim 26.04.2021]
  • Nordin, A. ve Majid, M.A.A., (2016). Parametric study on the effects of pinch and approach points on heat recovery steam generator performance at a district cooling system. Journal of Mechanical Engineering and Sciences, 10 (2), 2134–2144.
  • Ouyang, T., Zhao, Z., Lu, J., Su, Z., Li, J. ve Huang, H. (2020). Waste heat cascade utilisation of solid oxide fuel cell for marine applications. Journal of Cleaner Production, 275, 124133.
  • Park, S., Vohs, J.M. ve Gorte, R.J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404 (6775), 265–267.
  • Park, S.H., Lee, Y.D. ve Ahn, K.Y. (2014). Performance analysis of an SOFC/HCCI engine hybrid system: System simulation and thermo-economic comparison. International Journal of Hydrogen Energy, 39 (4), 1799–1810.
  • Parks, G., Boyd, R., Cornish, J. ve Remick, R. (2014). Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration, International Renewable Energy Laboratory, Technical Report.
  • Peng, D. ve Robinson, D.B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.
  • Sapra, H., Stam, J., Reurings, J., van Biert, L., van Sluijs, W., de Vos, P., Visser, K., Vellayani, A.P. ve Hopman, H. (2021). Integration of solid oxide fuel cell and internal combustion engine for maritime applications. Applied Energy, 281, 115854.
  • Sohal, M.S. (2009). Degradation in solid oxide cells during high temperature electrolysis, Idaho National Laboratory, Technical Report.
  • Shirmohammadi, R., Aslani, A., Ghasempour, R., Romeo, L. M., ve Petrakopoulou, F. (2021). Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant. Journal of Thermal Analysis and Calorimetry, 145(3), 1585–1597.
  • Ship&Bunker, (2021). Rotterdam Bunker Prices. https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#ULSFO. [Online] [Erişim 02.06.2021]
  • Van Biert, L., Godjevac, M., Visser, K. ve Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345–364.
  • Woodyard, D., (2009). Pounder’s marine diesel engines and gas turbines. Butterworth-Heinemann.
  • Wu, P. ve Bucknall, R. (2020). Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry. International Journal of Hydrogen Energy, 45(4), 3193–3208. Yan, Z., He, A., Hara, S. ve Shikazono, N. (2019). Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms. Energy Conversion Management, 198, 111916.
  • Yonekura, T., Yachikawa, Y., Yoshizuma, T., Shiratori, Y., Ito, K. ve Sasaki, K. (2011). Exchange Current Density of Solid Oxide Fuel Cell Electrodes. ECS Transactions, 35(1), 1007–1014.
  • Zhang, X., Chan, S.H., Li, G., Ho, H.K., Li, J. ve Feng, Z. (2010). A review of integration strategies for solid oxide fuel cells. Journal of Power Sources, 195(3), 685–702.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Engin Güler Bu kişi benim 0000-0002-1553-4553

Selma Ergin 0000-0001-8343-2455

Barış Barlas 0000-0002-5846-2369

Proje Numarası -
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 220

Kaynak Göster

APA Güler, E., Ergin, S., & Barlas, B. (2021). Bir Koster için Yardımcı Güç Kaynağı Olarak Katı Oksit Yakıt Pilinin Termodinamik, Ekonomik ve Çevresel Analizi. Gemi Ve Deniz Teknolojisi(220), 86-107. https://doi.org/10.54926/gdt.979252