Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 5 Sayı: 1, 10 - 18, 01.04.2020
https://doi.org/10.29128/geomatik.560026

Öz

Kaynakça

  • Alkan, R. M., Ozulu, I. M., & İlçi, V. (2017). Performance evaluation of Single Baseline and Network RTK GNSS. MyCoordinates, December, 11–15.
  • Aponte, J., Meng, X., Burbidge, M., & Kingdom, U. (2008). Performance Assessment of a GPS Network RTK Service Performance Assessment of a GPS Network RTK Service. Generations Journal Of The American Society On Aging.
  • Brandl, M., Chen, X., Drescher, R., Glocker, M., Landau, H., Nardo, A., … Zhang, F. (2014). Advancing Trimble RTX Technology by adding BeiDou and Galileo. In ESA European Navigation Conference (ENC2014).
  • Carballido, J., Perez-Ruiz, M., Emmi, L., & Agüera, J. (2014). Comparison of Positional Accuracy Between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles Under Field Conditions. Applied Engineering in Agriculture, 30(3), 361–366. https://doi.org/10.13031/aea.30.10342
  • Chen, X., Allison, T., Cao, W., Ferguson, K., Grünig, S., Gomez, V., … Talbot, N. (2011). Trimble RTX, an Innovative New Approach for Network RTK. In 24th International Technical Meeting of the Satellite Division of the Institute of Navigation 2011, ION GNSS 2011 (Vol. 3, pp. 2214–2219). Portland, OR.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., … Pagels, C. (2012). Introducing ambiguity resolution in web-hosted global multi-GNSS precise positioning with trimble RTX-PP. 25th International Technical Meeting of the Satellite Division of the Institute of Navigation 2012, ION GNSS 2012, 2, 1115–1125.
  • Eissfeller, B. (2012). Real Time Kinematic and Precise Point Positioning: Status and Trends. Ger. J., GPS 87, 131–148.
  • Glocker, M., Landau, H., Leandro, R., & Nitschke, M. (2012). Global precise multi-GNSS positioning with trimble centerpoint RTX. In 6th ESA Workshop on Satellite Navigation Technologies: Multi-GNSS Navigation Technologies Galileo’s Here, NAVITEC 2012 and European Workshop on GNSS Signals and Signal Processing. https://doi.org/10.1109/NAVITEC.2012.6423060
  • Hutton, J. J., Gopaul, N., Zhang, X., Wang, J., Menon, V., Rieck, D., … Pastor, F. (2016). Centimeter-Level, Robust GNSS-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 819–826. https://doi.org/10.5194/isprsarchives-XLI-B3-819-2016
  • İlçi, V. (2019). Accuracy Comparison of Real-Time GNSS Positioning Solutions: Case Study of Mid-North Anatolia. Measurement, 142(August), 1–10. https://doi.org/https://doi.org/10.1016/j.measurement.2019.04.067
  • Krzyżek, R. (2013). Verification of applicability of the Trimble RTX satellite technology with xFill function in establishing surveying control networks. Geodesy and Cartography, 62(2), 217–233. https://doi.org/10.2478/geocart-2013-0014
  • Lambrou, E., & Kanellopoulos, N. (2018). Check and calibration of a single GNSS receiver by using the VRS RTN positioning method. Measurement, 117, 221–225. https://doi.org/10.1016/j.measurement.2017.12.001
  • Leandro, R., Landau, H., Nitschke, M., Glocker, M., Seeger, S., Chen, X., … Kipka, A. (2012). Real-Time Extended GNSS Positioning: A New Generation of Centimeter-Accurate Networks. GPS World, July, 36–42.
  • Li, B., Feng, Y., Shen, Y., & Wang, C. (2010). Geometry-specified troposphere decorrelation for subcentimeter real-time kinematic solutions over long baselines. Journal of Geophysical Research, 115, B11404. https://doi.org/10.1029/2010JB007549
  • Nardo, A., Drescher, R., Brandl, M., Chen, X., Landau, H., Rodriguez-solano, C., … Weinbach, U. (2015). Experiences with Trimble CenterPoint RTX with Fast Convergence. In ESA European Navigation Conference (ENC2015).
  • Siejka, Z. (2014). Verification of the Usefulness of the Trimble RTX Extended Satellite Technology with the xFill Function in the Local Network Implementing RTK Measurements. Artificial Satellites, 49(4), 191–209. https://doi.org/10.2478/arsa-2014-0015
  • URL1. Trimble CenterPoint RTX. https://www.trimble.com/Positioning-Services/CenterPoint-RTX (Erişim tarihi 02.05.2019)
  • URL2. STARFIRE. https://www.navcomtech.com/en/product/globalcorrectionservice/ (Erişim tarihi 02.05.2019)
  • URL3. TUSAGA-AKTIF. https://www.tkgm.gov.tr/tr/icerik/tusaga-aktif-0 (Erişim tarihi 02.05.2019)
  • URL4. IGS. http://www.igs.org/ (Erişim tarihi 02.05.2019)

CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması

Yıl 2020, Cilt: 5 Sayı: 1, 10 - 18, 01.04.2020
https://doi.org/10.29128/geomatik.560026

Öz

Günümüzde IGS gibi uydu sistemlerine ait yörünge ve zaman düzeltme
verilerini tüm GNSS kullanıcılarının hizmetine sunan servisler sayesinde yeni
küresel konum belirleme algoritma, teknik ve teknolojileri ortaya çıkmaktadır.
Bu çözümler mevcut konum belirleme tekniklerinin dezavantajlarını gidermek ve
kullanıcıların ihtiyaçlarını karşılamak amacıyla geliştirilmektedir. Söz konusu
yenilikçi teknoloji ürünlerinden biri de CenterPoint Real Time eXtended (RTX)
teknolojisidir. CenterPoint RTX teknolojisi yüksek doğruluklu konum ve
yükseklik bilgisini gerçek zamanlı olarak küresel ölçekte kullanıcılarına
sağlamayı amaçlamaktadır. Bu çalışmada CenterPoint RTX teknolojisinin sağladığı
üç-boyutlu koordinat bilgisinin doğruluğu ve tekrarlana bilirliği araştırılmaktadır.
Belirlenen 120 km’lik bir güzergâh boyunca 20’şer km aralıklarla 7 test noktası
tesis edilmiştir. Test noktalarında 2 farklı ölçme serisinde 1’er sn ölçüm
aralığında 75 dakika süresince GNSS gözlemleri gerçekleştirilmiştir.
CenterPoint RTX teknolojisinin sağladığı anlık koordinat verileri noktaların
bilinen koordinatlarıyla karşılaştırılmıştır. Elde edilen sonuçlara göre 1.
ölçüm serisinde ortalama 2 cm konum ve 3 cm yükseklik doğruluğu elde edilirken,
2. ölçüm serisinde ortalama 2 cm konum ve 4 cm yükseklik doğruluğu elde
edilmiştir. Ancak bu doğrulukların elde edilmesi için 50 dk’lık yakınsama
süresine ihtiyaç duyulduğu tespit edilmiştir.   
 

Kaynakça

  • Alkan, R. M., Ozulu, I. M., & İlçi, V. (2017). Performance evaluation of Single Baseline and Network RTK GNSS. MyCoordinates, December, 11–15.
  • Aponte, J., Meng, X., Burbidge, M., & Kingdom, U. (2008). Performance Assessment of a GPS Network RTK Service Performance Assessment of a GPS Network RTK Service. Generations Journal Of The American Society On Aging.
  • Brandl, M., Chen, X., Drescher, R., Glocker, M., Landau, H., Nardo, A., … Zhang, F. (2014). Advancing Trimble RTX Technology by adding BeiDou and Galileo. In ESA European Navigation Conference (ENC2014).
  • Carballido, J., Perez-Ruiz, M., Emmi, L., & Agüera, J. (2014). Comparison of Positional Accuracy Between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles Under Field Conditions. Applied Engineering in Agriculture, 30(3), 361–366. https://doi.org/10.13031/aea.30.10342
  • Chen, X., Allison, T., Cao, W., Ferguson, K., Grünig, S., Gomez, V., … Talbot, N. (2011). Trimble RTX, an Innovative New Approach for Network RTK. In 24th International Technical Meeting of the Satellite Division of the Institute of Navigation 2011, ION GNSS 2011 (Vol. 3, pp. 2214–2219). Portland, OR.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., … Pagels, C. (2012). Introducing ambiguity resolution in web-hosted global multi-GNSS precise positioning with trimble RTX-PP. 25th International Technical Meeting of the Satellite Division of the Institute of Navigation 2012, ION GNSS 2012, 2, 1115–1125.
  • Eissfeller, B. (2012). Real Time Kinematic and Precise Point Positioning: Status and Trends. Ger. J., GPS 87, 131–148.
  • Glocker, M., Landau, H., Leandro, R., & Nitschke, M. (2012). Global precise multi-GNSS positioning with trimble centerpoint RTX. In 6th ESA Workshop on Satellite Navigation Technologies: Multi-GNSS Navigation Technologies Galileo’s Here, NAVITEC 2012 and European Workshop on GNSS Signals and Signal Processing. https://doi.org/10.1109/NAVITEC.2012.6423060
  • Hutton, J. J., Gopaul, N., Zhang, X., Wang, J., Menon, V., Rieck, D., … Pastor, F. (2016). Centimeter-Level, Robust GNSS-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 819–826. https://doi.org/10.5194/isprsarchives-XLI-B3-819-2016
  • İlçi, V. (2019). Accuracy Comparison of Real-Time GNSS Positioning Solutions: Case Study of Mid-North Anatolia. Measurement, 142(August), 1–10. https://doi.org/https://doi.org/10.1016/j.measurement.2019.04.067
  • Krzyżek, R. (2013). Verification of applicability of the Trimble RTX satellite technology with xFill function in establishing surveying control networks. Geodesy and Cartography, 62(2), 217–233. https://doi.org/10.2478/geocart-2013-0014
  • Lambrou, E., & Kanellopoulos, N. (2018). Check and calibration of a single GNSS receiver by using the VRS RTN positioning method. Measurement, 117, 221–225. https://doi.org/10.1016/j.measurement.2017.12.001
  • Leandro, R., Landau, H., Nitschke, M., Glocker, M., Seeger, S., Chen, X., … Kipka, A. (2012). Real-Time Extended GNSS Positioning: A New Generation of Centimeter-Accurate Networks. GPS World, July, 36–42.
  • Li, B., Feng, Y., Shen, Y., & Wang, C. (2010). Geometry-specified troposphere decorrelation for subcentimeter real-time kinematic solutions over long baselines. Journal of Geophysical Research, 115, B11404. https://doi.org/10.1029/2010JB007549
  • Nardo, A., Drescher, R., Brandl, M., Chen, X., Landau, H., Rodriguez-solano, C., … Weinbach, U. (2015). Experiences with Trimble CenterPoint RTX with Fast Convergence. In ESA European Navigation Conference (ENC2015).
  • Siejka, Z. (2014). Verification of the Usefulness of the Trimble RTX Extended Satellite Technology with the xFill Function in the Local Network Implementing RTK Measurements. Artificial Satellites, 49(4), 191–209. https://doi.org/10.2478/arsa-2014-0015
  • URL1. Trimble CenterPoint RTX. https://www.trimble.com/Positioning-Services/CenterPoint-RTX (Erişim tarihi 02.05.2019)
  • URL2. STARFIRE. https://www.navcomtech.com/en/product/globalcorrectionservice/ (Erişim tarihi 02.05.2019)
  • URL3. TUSAGA-AKTIF. https://www.tkgm.gov.tr/tr/icerik/tusaga-aktif-0 (Erişim tarihi 02.05.2019)
  • URL4. IGS. http://www.igs.org/ (Erişim tarihi 02.05.2019)
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Veli İlci 0000-0002-9485-874X

Yayımlanma Tarihi 1 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 1

Kaynak Göster

APA İlci, V. (2020). CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması. Geomatik, 5(1), 10-18. https://doi.org/10.29128/geomatik.560026
AMA İlci V. CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması. Geomatik. Nisan 2020;5(1):10-18. doi:10.29128/geomatik.560026
Chicago İlci, Veli. “CenterPoint RTX Teknolojisinin Doğruluk Ve Tekrarlana bilirliğinin Araştırılması”. Geomatik 5, sy. 1 (Nisan 2020): 10-18. https://doi.org/10.29128/geomatik.560026.
EndNote İlci V (01 Nisan 2020) CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması. Geomatik 5 1 10–18.
IEEE V. İlci, “CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması”, Geomatik, c. 5, sy. 1, ss. 10–18, 2020, doi: 10.29128/geomatik.560026.
ISNAD İlci, Veli. “CenterPoint RTX Teknolojisinin Doğruluk Ve Tekrarlana bilirliğinin Araştırılması”. Geomatik 5/1 (Nisan 2020), 10-18. https://doi.org/10.29128/geomatik.560026.
JAMA İlci V. CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması. Geomatik. 2020;5:10–18.
MLA İlci, Veli. “CenterPoint RTX Teknolojisinin Doğruluk Ve Tekrarlana bilirliğinin Araştırılması”. Geomatik, c. 5, sy. 1, 2020, ss. 10-18, doi:10.29128/geomatik.560026.
Vancouver İlci V. CenterPoint RTX Teknolojisinin Doğruluk ve Tekrarlana bilirliğinin Araştırılması. Geomatik. 2020;5(1):10-8.