Araştırma Makalesi
BibTex RIS Kaynak Göster

Türk Antarktika Araştırma İstasyonu çevresinde hiperspektral Hyperion verileri kullanılarak mineralojik araştırma

Yıl 2023, Cilt: 57 Sayı: 1, 42 - 62, 03.07.2023

Öz

1820'de keşfedilen Antarktika, neredeyse tamamen buzla kaplı olması bakımından benzersizdir. Bozulmamış doğası ve onu etkileyecek hiçbir insan topluluğu olmaması nedeniyle gezegenimizin bir tür hafızasıdır. Türkiye'nin de aralarında bulunduğu çeşitli ülkelere ait araştırma istasyonları, Şili'nin en güney ucundaki yerleşimlerden yaklaşık 1200 km uzaklıkta yer almaktadır. İstasyonların yerleşim yerlerinden uzak olmasından dolayı ihtiyaçlarının anakaradan karşılanması gerekmekte olup bu durum istasyonların geçici veya sınırlı kapasiteyle çalışmaya zorlamaktadır. Bu araştırmanın amacı, Türkiye Antarktika Araştırma İstasyonunun (TARS) ihtiyaçlarını kısmen de olsa karşılayabilmek için istasyon çevresindeki mineralojik yapının incelenmesidir. Bu minerallerin yüksek derecede korunan bu bölgede, özellikle atık su arıtma sistemlerinin veya içme suyunun filtrasyonu için kullanılmasının yanı sıra, özel koşullarda gerçekleştirilecek tarımsal amaçlar için de değerlendirilebileceği öngörülmektedir. Uzaktan algılama ile yapılacak mineralojik çalışmalarda kullanılacak Hyperion uydusunun arşiv taramasında optik uyduların en büyük zayıflığı olan bulutluluk ve zeminin görülmesini engelleyen karla kaplı bölgeler dikkate alınmış ve 09.01.2020 tarihli görüntünün en uygun olduğu görülmüştür. Araştırma için uygun bulunan Hyperion görüntüsü içindeki kara parçalarından TARS'ın bulunduğu Horseshoe Adası'nın 50 km batısındaki en yakın kara parçası olan Jenny Adası seçilmiştir. Çalışmada kullanılan Hyperion verilerinin radyometrik ve atmosferik düzeltmeleri için ENVI yazılımı kullanılmıştır. Aynı programın THOR (Tactical Hyperspectral Operations Resource) modülünde yer alan HMI (Hyperspectral Material Identification) aracı kullanılarak mineral araştırması yapılmıştır. THOR HMI çalışmasında USGS mineral veri tabanı kullanılmış ve en iyi eşleşen mineraller ACE (Adaptive Coherence Estimator) tekniği kullanılarak seçilmiştir. Başlıca mineraller olarak, Jenny Adası'nın kuzeyindeki kıyı kesimlerinde Korindon, Diaspor ve Montmorillonit mineralleri belirlenirken, adanın kayalık bölgesinde Albit-plajiyoklaz ve Mikroklin-feldispat mineralleri anomaliler vermektedir. Götit (α-FeO(OH), Hematit (Fe2O3), Ferrihidrit ((Fe3+)2O3•0.5H2O), Lepidokrosit (γ-FeO(OH)), Limonit (FeO(OH)·nH2O), Rutil (TiO2) ve Kuprit (Cu2O) minerallerinin de düşük konsantrasyonlarda bulunduğu tespit edilmiştir.

Kaynakça

  • Barry, P., 2001. EO-1/Hyperion Science Data User’s Guide. TRW Space, Defense & Information Systems.
  • Bastias, J., Calderón, M., Israel, L., Hervé, F., Spikings, R., Pankhurst, R., Castillo, P., Fanning, M., & Ugalde, R., 2019.
  • The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the fore arc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula. International Geology Review, 62(11), 1467-1484. https://doi.org/10.1080/00206814.2019.1655669.
  • Beck, R., 2003. EO-1 User Guide v.2.3; University of Cincinnati: Cincinnati, Ohio, U.S., p.74.
  • Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. SPIE, Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Vol. 5806, pp. 668-678.
  • Bernstein, L.S., Jin, X., Gregor, B., Adler-Golden, S.M., 2012. Quick Atmospheric Correction Code: Algorithm Description and Recent Upgrades. Optical Engineering 51, No. 11 111719. https://doi.org/10.1117/1.OE.51.11.111719.
  • Canty, J.M., 2014. Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL and Python., Third Edition. CRC Press.
  • Chacon, N., Ascanio, M., Herrera, R., Benzo, D., Flores, S., Silva, S.J., Garcİa, B. 2013. Do P cycling patterns differ between ice-free areas and glacial boundaries in the Maritime Antarctic region? Arctic, Antarctic, and Alpine Research, 45, 190–200. https://doi.org/10.1657/1938-4246-45.2.190.
  • Datt, B., McVicar, T.R., Van Niel, T.G., Jupp, D.L.B., 2003. Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 6, pp. 1246-1259, June 2003, https://doi.org/10.1109/TGRS.2003.813206.
  • Edwards, H.G.M., Wynn-Williams, D.D., Villar, S.E.J., 2004. Biological modification of haematite in Antarctic cryptoendolithic communities. J. Raman Spectrosc., 35: 470-474. https://doi.org/10.1002/jrs.1171.
  • Griffiths, C.J., Oglethorpe, R.D., 1998. The stratigraphy and geochronology of Adelaide Island. Antarctic Science, 10, 462-475.
  • Jefferson, T.H., 1980. Angiosperm fossils in supposed Jurassic volcanogenic shales, Antarctica. Nature, 285, 187-188.
  • Kelly, N.M., Harley, S.L., 2004. Orthopyroxene-corundum in Mg-Al-rich granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45, 1481-1512. https://doi.org/10.1093/petrology/egh023. L3HARRIS, 2023. Hyperspectral Material Identification, https://www.l3harrisgeospatial.com/docs/thorhyperspectralmaterialidentification.html,Date of access: 05.05.2023.
  • NASA, 2023. Catalog of Spaceborne Imaging, NASA Space Science Data Coordinated Archive (NSSDC),
  • NASA Goddard Space Flight Center (GSFC), https://nssdc.gsfc.nasa.gov/, Date of access: 05.05.2023.
  • NGA, 1988. Square Bay to Matha Strait Including Adelaide Island: Antarctica. United States, Defense Mapping Agency, Hydrographic/Topographic Center. National Geospatial-Intelligence Agency.
  • Pankhurst, R.J., 1982. Rb-Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society, London, 139, 701-711.
  • Riley, T.R., Flowerdew, M.J., Haselwimmer, C.E., 2011. Geological Map of Adelaide Island, Graham Land (1:200 000 scale). BAS GEOMAP 2 Series, sheet 2, British Antarctic Survey, Cambridge, UK.
  • Riley, T.R., Flowerdew, M.J., Whitehouse, M.J., 2012. Chrono- and lithostratigraphy of a Mesozoic–Tertiary fore- to intra-arc basin: Adelaide Island, Antarctic Peninsula. Geological Magazine, 149(5), 768-782. doi:10.1017/S0016756811001002.
  • Simon, K., and Beckman, T., 2006. Hyperion Level 1G (L1GST) Product Output Files Data Format Control Book (DFCB), Earth Observing-1 (EO-1), version 1.0, USGS Center for Earth Resource Observation and Science (EROS), Sioux Falls, South Dakota.
  • Siqueira, R.G., Moquedace, C.M., Francelino, M.R., Schaefer, C.E.G.R., Fernandes-Filho, E.I., 2023. Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula, Geoderma, vol:432, 116405, https://doi.org/10.1016/j.geoderma.2023.116405.
  • USGS, 2021. EO1 Data Dictionary. Earth Resources Observation and Science (EROS) Center July 2, 2021. https://www.usgs.gov/centers/eros/science/eo1-data-dictionary.

Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station

Yıl 2023, Cilt: 57 Sayı: 1, 42 - 62, 03.07.2023

Öz

Antarctica discovered in 1820, is unique in that it is practically completely covered with ice. It is a kind of memory of our planet due to its pristine nature and no human community to influence it. The communities near Chile's southernmost tip, which is around 1200 km away, are the closest to the continent and include research stations belonging to various countries, including Türkiye. Because the stations are so remote from civilization, they must meet the needs of research stations on the mainland, which forces them to operate temporarily or with limited capability. The goal of this research is to explore the mineralogical structure around the Turkish Antarctic Research Station (TARS) in order to meet the station's demands, even if only partially. It is anticipated that these minerals can be exploited in this highly protected region, particularly in wastewater treatment systems for filtration or drinking water filtration, as well as for agricultural purposes to be carried out in unique conditions. Cloudiness, which is the largest weakness of optical satellites, as well as snow-covered regions that prohibit the ground from being seen, were considered in the archive scanning of this satellite, and the image dated 09.01.2020 was determined to be the best suited image. Jenny Island, the nearest land piece to the west, with a distance of 50 km to Horseshoe Island, where the TARS is located, was chosen as the research area among the land parts inside the Hyperion image. ENVI software was used for radiometric and atmospheric corrections of the Hyperion data used in the study. Mineral research was conducted using the Hyperspectral Material Identification (HMI) tool in the Tactical Hyperspectral Operations Resource (THOR) module of the same program. The USGS mineral database was used in the THOR HMI study and the minerals with the best match were selected using the Adaptive Coherence Estimator (ACE) technique. As major minerals, Corundum, Diaspore, and Montmorillonite minerals are determined in the coastal areas north of Jenny Island, Albite-plagioclase and Microcline-feldspar minerals give anomalies in the rocky region of the island. Goethite (α-FeO(OH), Hematite (Fe2O3), Ferrihydrite ((Fe3+)2O3•0.5H2O), Lepidocrosite (γ-FeO(OH)), Limonite (FeO(OH)·nH2O), Rutile (TiO2) and Cuprite (Cu2O) minerals are present in low concentrations.

Kaynakça

  • Barry, P., 2001. EO-1/Hyperion Science Data User’s Guide. TRW Space, Defense & Information Systems.
  • Bastias, J., Calderón, M., Israel, L., Hervé, F., Spikings, R., Pankhurst, R., Castillo, P., Fanning, M., & Ugalde, R., 2019.
  • The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the fore arc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula. International Geology Review, 62(11), 1467-1484. https://doi.org/10.1080/00206814.2019.1655669.
  • Beck, R., 2003. EO-1 User Guide v.2.3; University of Cincinnati: Cincinnati, Ohio, U.S., p.74.
  • Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., 2005. Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. SPIE, Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Vol. 5806, pp. 668-678.
  • Bernstein, L.S., Jin, X., Gregor, B., Adler-Golden, S.M., 2012. Quick Atmospheric Correction Code: Algorithm Description and Recent Upgrades. Optical Engineering 51, No. 11 111719. https://doi.org/10.1117/1.OE.51.11.111719.
  • Canty, J.M., 2014. Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL and Python., Third Edition. CRC Press.
  • Chacon, N., Ascanio, M., Herrera, R., Benzo, D., Flores, S., Silva, S.J., Garcİa, B. 2013. Do P cycling patterns differ between ice-free areas and glacial boundaries in the Maritime Antarctic region? Arctic, Antarctic, and Alpine Research, 45, 190–200. https://doi.org/10.1657/1938-4246-45.2.190.
  • Datt, B., McVicar, T.R., Van Niel, T.G., Jupp, D.L.B., 2003. Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 6, pp. 1246-1259, June 2003, https://doi.org/10.1109/TGRS.2003.813206.
  • Edwards, H.G.M., Wynn-Williams, D.D., Villar, S.E.J., 2004. Biological modification of haematite in Antarctic cryptoendolithic communities. J. Raman Spectrosc., 35: 470-474. https://doi.org/10.1002/jrs.1171.
  • Griffiths, C.J., Oglethorpe, R.D., 1998. The stratigraphy and geochronology of Adelaide Island. Antarctic Science, 10, 462-475.
  • Jefferson, T.H., 1980. Angiosperm fossils in supposed Jurassic volcanogenic shales, Antarctica. Nature, 285, 187-188.
  • Kelly, N.M., Harley, S.L., 2004. Orthopyroxene-corundum in Mg-Al-rich granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45, 1481-1512. https://doi.org/10.1093/petrology/egh023. L3HARRIS, 2023. Hyperspectral Material Identification, https://www.l3harrisgeospatial.com/docs/thorhyperspectralmaterialidentification.html,Date of access: 05.05.2023.
  • NASA, 2023. Catalog of Spaceborne Imaging, NASA Space Science Data Coordinated Archive (NSSDC),
  • NASA Goddard Space Flight Center (GSFC), https://nssdc.gsfc.nasa.gov/, Date of access: 05.05.2023.
  • NGA, 1988. Square Bay to Matha Strait Including Adelaide Island: Antarctica. United States, Defense Mapping Agency, Hydrographic/Topographic Center. National Geospatial-Intelligence Agency.
  • Pankhurst, R.J., 1982. Rb-Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society, London, 139, 701-711.
  • Riley, T.R., Flowerdew, M.J., Haselwimmer, C.E., 2011. Geological Map of Adelaide Island, Graham Land (1:200 000 scale). BAS GEOMAP 2 Series, sheet 2, British Antarctic Survey, Cambridge, UK.
  • Riley, T.R., Flowerdew, M.J., Whitehouse, M.J., 2012. Chrono- and lithostratigraphy of a Mesozoic–Tertiary fore- to intra-arc basin: Adelaide Island, Antarctic Peninsula. Geological Magazine, 149(5), 768-782. doi:10.1017/S0016756811001002.
  • Simon, K., and Beckman, T., 2006. Hyperion Level 1G (L1GST) Product Output Files Data Format Control Book (DFCB), Earth Observing-1 (EO-1), version 1.0, USGS Center for Earth Resource Observation and Science (EROS), Sioux Falls, South Dakota.
  • Siqueira, R.G., Moquedace, C.M., Francelino, M.R., Schaefer, C.E.G.R., Fernandes-Filho, E.I., 2023. Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula, Geoderma, vol:432, 116405, https://doi.org/10.1016/j.geoderma.2023.116405.
  • USGS, 2021. EO1 Data Dictionary. Earth Resources Observation and Science (EROS) Center July 2, 2021. https://www.usgs.gov/centers/eros/science/eo1-data-dictionary.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Maden Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Ali Akgül 0000-0002-5517-9576

Suphi Ural 0000-0003-4865-011X

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 3 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 57 Sayı: 1

Kaynak Göster

APA Akgül, M. A., & Ural, S. (2023). Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station. Geosound, 57(1), 42-62.
AMA Akgül MA, Ural S. Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station. Geosound. Temmuz 2023;57(1):42-62.
Chicago Akgül, Mehmet Ali, ve Suphi Ural. “Mineralogical Research Using Hyperspectral Hyperion Data in the Vicinity of the Turkish Antarctic Research Station”. Geosound 57, sy. 1 (Temmuz 2023): 42-62.
EndNote Akgül MA, Ural S (01 Temmuz 2023) Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station. Geosound 57 1 42–62.
IEEE M. A. Akgül ve S. Ural, “Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station”, Geosound, c. 57, sy. 1, ss. 42–62, 2023.
ISNAD Akgül, Mehmet Ali - Ural, Suphi. “Mineralogical Research Using Hyperspectral Hyperion Data in the Vicinity of the Turkish Antarctic Research Station”. Geosound 57/1 (Temmuz 2023), 42-62.
JAMA Akgül MA, Ural S. Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station. Geosound. 2023;57:42–62.
MLA Akgül, Mehmet Ali ve Suphi Ural. “Mineralogical Research Using Hyperspectral Hyperion Data in the Vicinity of the Turkish Antarctic Research Station”. Geosound, c. 57, sy. 1, 2023, ss. 42-62.
Vancouver Akgül MA, Ural S. Mineralogical research using hyperspectral Hyperion data in the vicinity of the Turkish Antarctic Research Station. Geosound. 2023;57(1):42-6.