Research Article
BibTex RIS Cite

Experimental Investigation of Dry Environment Abrasive Wear Behavior of a Plain Bearing Material

Year 2022, Volume: 8 Issue: 1, 89 - 102, 30.04.2022

Abstract

In this study, using variables such as load and sliding speed, which are effective parameters on abrasive wear, the amount of wear on the bearing material, friction coefficients, and trace depth values according to the experimental conditions were determined. According to the results of the analysis of variance performed as a result of the experiments carried out in the ball-on-flat experimental setup, the most effective parameter for all outputs was the load value, and the effect ratio for mass loss was 66.26%, the effect ratio for the friction coefficient was 53.02% and the effect ratio for the trace depth was 85.69%. The R2 values obtained from the comparison of the experimental results with the regression results were found to be 0.9750, 0.9988, and 0.9759 for mass loss, friction coefficient, and trace depth, respectively. These results show that the regression model fit is good.

Supporting Institution

Karabuk University Coordinatorship of Research Projects

Project Number

KBU BAP-21-ABP-062

Thanks

This study was supported by Karabuk University Coordinatorship of Research Projects with the project number of KBU BAP-21-ABP-062

References

  • [1] E. De Robertis, E.H.H. Cosme, R.S. Neves, A.Y. Kuznetsov, A.P.C. Campos, S.M. Landi, “Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids.” Applied Thermal Engineering, vol. 41, pp. 10–17, 2012. doi:10.1016/j.applthermaleng.2012.01.003.
  • [2] S.M. S. Murshed, “Determination of effective specific heat of nanofluids.” Journal of Experimental Nanoscience, 6:5, pp. 539–546, 2011. doi:10.1080/17458080.2010.498838.
  • [3] M.H. Cetin, S. Korkmaz, “Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method” Tribology International, vol. 147, pp. 106273, 2020. https://doi.org/10.1016/j.triboint.2020.106273.
  • [4] R.A. García-León, J. Martínez-Trinidad, R. Zepeda-Bautista, I. Campos-Silva, A. Guevara-Morales, J. Martínez-Londoño, J. Barbosa-Saldaña, “Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: A statistical analysis,” Tribology International, vol. 157, 2021, https://doi.org/10.1016/j.triboint.2021.106885.
  • [5] A.N. Sudhakar, R. Markandeya, B. Srinivasa Rao, Ajoy Kumar Pandey, D. Kaushik, “Effect of alloying elements on the dry sliding wear behavior of high chromium white cast iron and Ni-hard iron,” Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.09.295.
  • [6] B. Suresha, Siddaramaiah, Kishore, S. Seetharamu, P. Sampath Kumaran, “Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites,” Wear, vol. 267, Issues 9–10, Pages 1405-1414, 2009. https://doi.org/10.1016/j.wear.2009.01.026.
  • [7] L. Xu, Y. Zhang, D. Zhang, M. Leng, “Preparation and tribological properties of Ag nanoparticles/reduced graphene oxide nanocomposites,” Industrial Lubrication and Tribology, vol. 70, pp. 1684–1691, 2017. doi:10.1108/ILT-03-2017-0054.
  • [8] G. Pitchayyapillai, P. Seenikannan, P. Balasundar, P. Narayanasamy, “Effect of nanosilver on microstructure, mechanical and tribological properties of cast 6061 aluminum alloy,” Transactions of Nonferrous Metals Society of China, vol. 27, pp. 2137–2145, 2017. doi:10.1016/S1003-6326(17)60239-5.
  • [9] H. Ghaednia, M.S. Hossain, R.L. Jackson, “Tribological Performance of Silver Nanoparticle–Enhanced Polyethylene Glycol Lubricants,” Tribology Transactions, vol. 59, pp. 585–592, 2016. doi:10.1080/10402004.2015.1092623.
  • [10] L. Gara, Q. Zou, “Friction and wear characteristics of oil-based ZnO nanofluids.” Tribology Transactions, vol. 56, pp. 236–244, 2013. doi:10.1080/10402004.2012.740148.
  • [11] H. Xie, B. Jiang, J. He, X. Xia, F. Pan, “Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts,” Tribology International, vol. 93, pp. 63–70, 2016. doi:10.1016/j.triboint.2015.08.009.
  • [12] Y.Y. Wu, W.C. Tsui, T.C. Liu, “Experimental analysis of tribological properties of lubricating oils with nanoparticle additives.” Wear, vol. 262, pp. 819–825, 2007. doi:10.1016/j.wear.2006.08.021.
  • [13] B. Kondul, “Borlama ile yüzeyi sertleştirilmiş ray çeliğinin aşınma davranışının incelenmesi,” Yüksek Lisans Tezi, KBÜ, Karabük, Türkiye, 2020.

Bir Kaymalı Yatak Malzemesinin Kuru Ortam Abrazif Aşınma Davranışının Deneysel Olarak İncelenmesi

Year 2022, Volume: 8 Issue: 1, 89 - 102, 30.04.2022

Abstract

Bu çalışmada, abrazif aşınma konusunda etkili parametreler olan yük ve kayma hızı gibi değişkenler kullanılarak yatak malzemesinde meydana gelen aşınma miktarları, deney şartlarına göre sürtünme katsayıları ve iz derinliği değerleri belirlenmiştir. Ball-on-flat deney düzeneğinde gerçekleştirilen deneyler sonucunda yapılan varyans analizi sonuçlarına göre tüm çıktılar için en etkili parametre yük değeri olup kütle kaybı için etki oranı %66,261, sürtünme katsayısı için etki oranı %53,021 ve iz derinliği için etki oranı ise %85,688 olarak bulunmuştur. Deneysel sonuçların regresyon sonuçları ile mukayesesinden elde edilen R2 değerleri ise kütle kaybı, sürtünme katsayısı ve iz derinliği için sırası ile 0,9750, 0,9988 ve 0,9759 olarak bulunmuştur. Bu sonuçlar regresyon model uyumunun iyi olduğunu göstermektedir.

Project Number

KBU BAP-21-ABP-062

References

  • [1] E. De Robertis, E.H.H. Cosme, R.S. Neves, A.Y. Kuznetsov, A.P.C. Campos, S.M. Landi, “Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids.” Applied Thermal Engineering, vol. 41, pp. 10–17, 2012. doi:10.1016/j.applthermaleng.2012.01.003.
  • [2] S.M. S. Murshed, “Determination of effective specific heat of nanofluids.” Journal of Experimental Nanoscience, 6:5, pp. 539–546, 2011. doi:10.1080/17458080.2010.498838.
  • [3] M.H. Cetin, S. Korkmaz, “Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method” Tribology International, vol. 147, pp. 106273, 2020. https://doi.org/10.1016/j.triboint.2020.106273.
  • [4] R.A. García-León, J. Martínez-Trinidad, R. Zepeda-Bautista, I. Campos-Silva, A. Guevara-Morales, J. Martínez-Londoño, J. Barbosa-Saldaña, “Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: A statistical analysis,” Tribology International, vol. 157, 2021, https://doi.org/10.1016/j.triboint.2021.106885.
  • [5] A.N. Sudhakar, R. Markandeya, B. Srinivasa Rao, Ajoy Kumar Pandey, D. Kaushik, “Effect of alloying elements on the dry sliding wear behavior of high chromium white cast iron and Ni-hard iron,” Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.09.295.
  • [6] B. Suresha, Siddaramaiah, Kishore, S. Seetharamu, P. Sampath Kumaran, “Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites,” Wear, vol. 267, Issues 9–10, Pages 1405-1414, 2009. https://doi.org/10.1016/j.wear.2009.01.026.
  • [7] L. Xu, Y. Zhang, D. Zhang, M. Leng, “Preparation and tribological properties of Ag nanoparticles/reduced graphene oxide nanocomposites,” Industrial Lubrication and Tribology, vol. 70, pp. 1684–1691, 2017. doi:10.1108/ILT-03-2017-0054.
  • [8] G. Pitchayyapillai, P. Seenikannan, P. Balasundar, P. Narayanasamy, “Effect of nanosilver on microstructure, mechanical and tribological properties of cast 6061 aluminum alloy,” Transactions of Nonferrous Metals Society of China, vol. 27, pp. 2137–2145, 2017. doi:10.1016/S1003-6326(17)60239-5.
  • [9] H. Ghaednia, M.S. Hossain, R.L. Jackson, “Tribological Performance of Silver Nanoparticle–Enhanced Polyethylene Glycol Lubricants,” Tribology Transactions, vol. 59, pp. 585–592, 2016. doi:10.1080/10402004.2015.1092623.
  • [10] L. Gara, Q. Zou, “Friction and wear characteristics of oil-based ZnO nanofluids.” Tribology Transactions, vol. 56, pp. 236–244, 2013. doi:10.1080/10402004.2012.740148.
  • [11] H. Xie, B. Jiang, J. He, X. Xia, F. Pan, “Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts,” Tribology International, vol. 93, pp. 63–70, 2016. doi:10.1016/j.triboint.2015.08.009.
  • [12] Y.Y. Wu, W.C. Tsui, T.C. Liu, “Experimental analysis of tribological properties of lubricating oils with nanoparticle additives.” Wear, vol. 262, pp. 819–825, 2007. doi:10.1016/j.wear.2006.08.021.
  • [13] B. Kondul, “Borlama ile yüzeyi sertleştirilmiş ray çeliğinin aşınma davranışının incelenmesi,” Yüksek Lisans Tezi, KBÜ, Karabük, Türkiye, 2020.
There are 13 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Recep Demirsöz 0000-0003-0674-4572

Project Number KBU BAP-21-ABP-062
Publication Date April 30, 2022
Submission Date November 29, 2021
Acceptance Date March 9, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

IEEE R. Demirsöz, “Experimental Investigation of Dry Environment Abrasive Wear Behavior of a Plain Bearing Material”, GJES, vol. 8, no. 1, pp. 89–102, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg