Araştırma Makalesi
BibTex RIS Kaynak Göster

İmplantasyon Uygulamaları İçin Toz Metalurjisi ile Üretilen Ti-16Nb-4Sn Alaşımının Mikroyapı ve Biyouyumluluk Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 8 Sayı: 1, 29 - 40, 30.04.2022

Öz

Bu çalışmada, Ti-16Nb-4Sn alaşımları az gözenekli ve çok gözenekli olarak geleneksel toz metalürjisi yöntemi ile üretildi. Sinterlenen numunelerin faz analizleri ve mikroyapılarında meydana gelen değişimler; XRD, optik mikroskop, SEM-EDS teknikleri kullanılarak incelendi. XRD analiz sonuçlarında yapının β ve  fazlarından oluştuğu tespit edildi. SEM-EDS incelemeleri sonucunda yapının,  fazın ait koyu gri ve β fazına ait açık gri olmak üzere iki tür morfolojiden oluştuğu tespit edildi. Gözenek oranı azaldıkça daha homojen bir yapının oluştuğu görüldü. Numunelerin gözenek oranının artması ile basma dayanımlarının azaldığı görülmektedir. Çok gözenekli numunelerin in vivo ortamda biyouyumluluk özellikleri incelendiğinde implantasyon bölgesinde toksik ve alerjik etkileşimin olmadığı görülmekte ve böylece numunelerin biyouyumluluk açısında ideal bir implant malzemesi olarak kullanılabileceği öngörülmektedir.

Destekleyen Kurum

Adıyaman Üniversitesi

Proje Numarası

MÜFLTP/2017-0001

Teşekkür

Bu çalışma, Adıyaman Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir (Proje No: MÜFLTP/2017-0001).

Kaynakça

  • [1] I. V. Okulov, A.V. Okulov, I.V. Soldatov, B. Luthringer, R. Willumeit-Römer, T. Wada, H. Kato, J. Weissmüller, J. Markmann, “Open porous dealloying-based biomaterials as a novel biomaterial platform,” Materials Science and Engineering C, vol. 88, pp.95-103, 2015.
  • [2] A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, F.D. Torre, “Microstructure and mechanical properties of Ti- 15Zr alloy used as dental implant material,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 62, pp.384-398, 2016.
  • [3] R.P. Verma, “Titanium based biomaterial for bone implants: A mini review.” Materials Today: Proceedings, vol. 26, pp.3148–3151, 2020.
  • [4] P. Xu, F. Pyczak, M. Yan, W. Limberg, R. Willumeit-Römer, T. Ebel, “Tensile toughening of powder-injection-molded β Ti-Nb-Zr biomaterials by adjusting TiC particle distribution from aligned to dispersed pattern,” Applied Materials Today, vol. 19, pp.1-14, 2020.
  • [5] M. Vardaki, S. Mohajernia, A. Pantazi, I.C. Nica, M. Enachescu, A. Mazare, I. Demetrescu, P. Schmuki, “Post treatments effect on TiZr nanostructures fabricated via anodizing.” Journal of Materials Research and Technology, vol. 6, pp.5802–5812, 2019.
  • [6] L. Frauchiger, M. Taborelli, P. Descouts, “Structural characterization of Ti90Al6V4 alloy and sulphur segregation,” Applied Surface Science, vol.115 (3), pp.232–242, 1997.
  • [7] M. Niinomi, M. Nakai, J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterial, vol. 8, pp.3888–3903, 2012.
  • [8] C. Pengfei, J. Ran, Z. Fenggang, L. Jianghua, F. “Tian, Mechanical properties and corrosion behavior of b-type Ti-Zr-Nb-Mo alloys for biomedical application.” Journal of Alloys and Compounds, vol. 842, pp.155693, 2020.
  • [9] J.-Y. Rho, T.Y. Tsui, G.M. Pharr, “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation” Biomaterial, vol. 18, pp.1325–1330, 1997.
  • [10] S. Ozan, J.X. Lin, Y.C. Li, R. Ipek, C.E. Wen, “Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices.” Acta Biomaterial, vol. 20, pp.176–187, 2015.
  • [11] T.K. Jung, H.S. Lee, S. Semboshi, N. Masahashi, T. Abumiya, S. Hanada, “Mechanical properties graded Ti alloy implants for orthopedic applications,” Materials Science Forum, vol. 631(632), pp.205–210, 2010.
  • [12] T.K. Jung,, S. Semboshi, N. Masahashi, S. Hanada, “Mechanical properties and microstructures of beta Ti-25Nb-11Sn ternary alloy for biomedical applications,” Materials Science and Engineering C, vol. 33, pp.1629–1635, 2013.
  • [13] K. Miura, N. Yamada, S. Hanada, T.K. Jung, “The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus.” Acta Biomaterial, vol. 7, pp.2320–2326, 2011.
  • [14] E. Yılmaz, A. Gökçe, F. Findik, H.O. Gülsoy, “Powder Metallurgy Processing of Ti–Nb Based Biomedical Alloys,” Acta Physica Polonica A, vol. 134, pp.278-280, 2018.
  • [15] O. Khalifa, E. Wahab, A. Tilp, “The Effect of Sn and TiO2 Nano Particles Added in Electroless Ni-P Plating Solution on the Properties of Composite Coatings.” Australian Journal of Basic and Applied Sciences, vol. 5(6), pp.136–144, 2011.
  • [16] X. Rao, C.L. Chun, Y.Y. Zheng, “Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 34, pp.27-36, 2014.
  • [17] P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, R. Caram, “Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys,” Materials Characterization, vol. 96, pp.273–281, 2014.
  • [18] M. Kaya, A. Yolun, O. Çakmak, F. Yakuphanoğlu, E. Elibol, M. Köm, M. Güvenç, “Biyomedikal Uygulamalar İçin Titanyum Esaslı Gözenekli TiNb Alaşımının Üretimi,” Nevşehir Bilim Teknoloji Dergisi, vol. 7, pp.49-59, 2018.
  • [19] M. Kaya, F. Yakuphanoğlu, “A study on microstructure of porous TiNbZr alloy produced as biomaterial,” Materialwissenschaft und Werkstofftechnik, vol. 50, pp.742–746, 2019.
  • [20] M. Kaya, F. Yakuphanoğlu, E. Elibol, M. Köm, “Microstructure characterization and biocompatibility behaviour of TiNbZr alloy fabricated by powder metallurgy,” Materials Research Express, vol. 6, pp.1-12, 2019.
  • [21] Ö. Çakmak, “TiNbSn Alaşımının Toz Metalurjisi ile Üretimi ve Biyouyumluluk Özelliğinin İncelenmesi,” Yüksek Lisans Tezi, Adıyaman Üniversitesi, Fen Bilimleri Enstitüsü, Adıyaman, pp. 1-117, 2017.
  • [22] E. Yılmaz, A. Gokçe, F. Findik, H.O. Gülsoy, “Characterization of biomedical Ti-16Nb-(0-4)Sn alloys produced by Powder Injection Molding,” Vacuum, vol. 142, pp.164-174, 2017.
  • [23] G. Xie, H. Kanetaka, H. Kato, F. Qin, W. Wang, “Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility,” Intermetallics, vol. 105, pp.153–162, 2019.
  • [24] M.K. Ibrahim, E. Hamzah, S.N. Saud, “Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs,” Journal of Materials Engineering and Performance, vol. 28, pp.382–393, 2018.
  • [25] P. Li, X. Ma, D. Wang, H. Zhang, “Microstructural and Mechanical Properties of -Type Ti–Nb–Sn Biomedical Alloys with Low Elastic Modulus,” Metarials, vol. 9, pp.1-16. 2019.
  • [26] Ö. Çakmak, M. Kaya, “Efect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy,” Applied Physics A, vol. 127, pp.561-570, 2021.
  • [27] A. Nouri, P.D. Hodgson, C.E. Wen, “Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy,” Acta Biomaterials, vol. 6, pp.1630–1639, 2010.
  • [28] T. Kunii, Y. Mori, H. Tanaka, A. Kogure, M. Kamimura, N. Mori, S. Hanada, N. Masahashi, E. Itoi, “Improved osseointegration of a TiNbSn alloy with a low Young’s modulus treated with anodic oxidation,” Science Report, vol. 9, pp.1-10, 2019.
  • [29] H. Tanaka, Y. Mori, A. Noro, A. Kogure, M. Kamimura, N. Yamada, S. Hanada, N. Masahashi, E. Itoi, “Apatite formation and biocompatibility of a low Young's modulus Ti-Nb-Sn alloy treated with anodic oxidation and hot water. PLoS One, vol. 11(2), pp.1-14, 2016.
  • [30] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, “Mechanical properties and osteoconductivity of porous bioactive titanium,” Biomaterials, vol. 26, pp.6014–6023, 2005.
  • [31] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, “Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment,” Materials Science and Engineering C, vol. 59, pp.690–701, 2016.
  • [32] B.S. Van, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H.V. Oosterwyck, J.P. Kruth, J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomaterials, vol. 8, pp.2824–2834, 2012.

Investigation of Microstructure and Biocompatibility Properties of Ti-16Nb-4Sn Alloy Produced by Powder Metallurgy for Implantation Applications

Yıl 2022, Cilt: 8 Sayı: 1, 29 - 40, 30.04.2022

Öz

In this study, Ti-16Nb-4Sn ternary alloy was produced as two different porosity by conventional powder metallurgy method. During production, ammonium bicarbonate was used as a volatile additive to increase the porosity. Considering the mass and size dimensions of the samples, the general porosities were determined as 13.62 and 56.32%. Phase analysis and changes in microstructure of sintered samples were examined using XRD, optical microscope, SEM-EDS techniques. In XRD analysis results, it was determined that the structure consisted of β and  phases. As a result of SEM-EDS examinations, it was determined that the structure consisted of two types of morphology: dark grey belonging to  phase and light grey belonging to β phase. The strengths of the samples were examined by performing a uniaxial compression test. As expected, it was determined that the compressive strength of the samples decreased with the increased porosity. Biocompatibility properties of samples with ideal pores in terms of biocompatibility (multi-porous) were examined in vivo using Sprague Dawley female rat. It was determined that there was no toxic and allergic interaction at the implantation site. Thus, it is predicted that the samples can be used as an ideal implant material in terms of biocompatibility.

Proje Numarası

MÜFLTP/2017-0001

Kaynakça

  • [1] I. V. Okulov, A.V. Okulov, I.V. Soldatov, B. Luthringer, R. Willumeit-Römer, T. Wada, H. Kato, J. Weissmüller, J. Markmann, “Open porous dealloying-based biomaterials as a novel biomaterial platform,” Materials Science and Engineering C, vol. 88, pp.95-103, 2015.
  • [2] A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, F.D. Torre, “Microstructure and mechanical properties of Ti- 15Zr alloy used as dental implant material,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 62, pp.384-398, 2016.
  • [3] R.P. Verma, “Titanium based biomaterial for bone implants: A mini review.” Materials Today: Proceedings, vol. 26, pp.3148–3151, 2020.
  • [4] P. Xu, F. Pyczak, M. Yan, W. Limberg, R. Willumeit-Römer, T. Ebel, “Tensile toughening of powder-injection-molded β Ti-Nb-Zr biomaterials by adjusting TiC particle distribution from aligned to dispersed pattern,” Applied Materials Today, vol. 19, pp.1-14, 2020.
  • [5] M. Vardaki, S. Mohajernia, A. Pantazi, I.C. Nica, M. Enachescu, A. Mazare, I. Demetrescu, P. Schmuki, “Post treatments effect on TiZr nanostructures fabricated via anodizing.” Journal of Materials Research and Technology, vol. 6, pp.5802–5812, 2019.
  • [6] L. Frauchiger, M. Taborelli, P. Descouts, “Structural characterization of Ti90Al6V4 alloy and sulphur segregation,” Applied Surface Science, vol.115 (3), pp.232–242, 1997.
  • [7] M. Niinomi, M. Nakai, J. Hieda, “Development of new metallic alloys for biomedical applications,” Acta Biomaterial, vol. 8, pp.3888–3903, 2012.
  • [8] C. Pengfei, J. Ran, Z. Fenggang, L. Jianghua, F. “Tian, Mechanical properties and corrosion behavior of b-type Ti-Zr-Nb-Mo alloys for biomedical application.” Journal of Alloys and Compounds, vol. 842, pp.155693, 2020.
  • [9] J.-Y. Rho, T.Y. Tsui, G.M. Pharr, “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation” Biomaterial, vol. 18, pp.1325–1330, 1997.
  • [10] S. Ozan, J.X. Lin, Y.C. Li, R. Ipek, C.E. Wen, “Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices.” Acta Biomaterial, vol. 20, pp.176–187, 2015.
  • [11] T.K. Jung, H.S. Lee, S. Semboshi, N. Masahashi, T. Abumiya, S. Hanada, “Mechanical properties graded Ti alloy implants for orthopedic applications,” Materials Science Forum, vol. 631(632), pp.205–210, 2010.
  • [12] T.K. Jung,, S. Semboshi, N. Masahashi, S. Hanada, “Mechanical properties and microstructures of beta Ti-25Nb-11Sn ternary alloy for biomedical applications,” Materials Science and Engineering C, vol. 33, pp.1629–1635, 2013.
  • [13] K. Miura, N. Yamada, S. Hanada, T.K. Jung, “The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus.” Acta Biomaterial, vol. 7, pp.2320–2326, 2011.
  • [14] E. Yılmaz, A. Gökçe, F. Findik, H.O. Gülsoy, “Powder Metallurgy Processing of Ti–Nb Based Biomedical Alloys,” Acta Physica Polonica A, vol. 134, pp.278-280, 2018.
  • [15] O. Khalifa, E. Wahab, A. Tilp, “The Effect of Sn and TiO2 Nano Particles Added in Electroless Ni-P Plating Solution on the Properties of Composite Coatings.” Australian Journal of Basic and Applied Sciences, vol. 5(6), pp.136–144, 2011.
  • [16] X. Rao, C.L. Chun, Y.Y. Zheng, “Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 34, pp.27-36, 2014.
  • [17] P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, R. Caram, “Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys,” Materials Characterization, vol. 96, pp.273–281, 2014.
  • [18] M. Kaya, A. Yolun, O. Çakmak, F. Yakuphanoğlu, E. Elibol, M. Köm, M. Güvenç, “Biyomedikal Uygulamalar İçin Titanyum Esaslı Gözenekli TiNb Alaşımının Üretimi,” Nevşehir Bilim Teknoloji Dergisi, vol. 7, pp.49-59, 2018.
  • [19] M. Kaya, F. Yakuphanoğlu, “A study on microstructure of porous TiNbZr alloy produced as biomaterial,” Materialwissenschaft und Werkstofftechnik, vol. 50, pp.742–746, 2019.
  • [20] M. Kaya, F. Yakuphanoğlu, E. Elibol, M. Köm, “Microstructure characterization and biocompatibility behaviour of TiNbZr alloy fabricated by powder metallurgy,” Materials Research Express, vol. 6, pp.1-12, 2019.
  • [21] Ö. Çakmak, “TiNbSn Alaşımının Toz Metalurjisi ile Üretimi ve Biyouyumluluk Özelliğinin İncelenmesi,” Yüksek Lisans Tezi, Adıyaman Üniversitesi, Fen Bilimleri Enstitüsü, Adıyaman, pp. 1-117, 2017.
  • [22] E. Yılmaz, A. Gokçe, F. Findik, H.O. Gülsoy, “Characterization of biomedical Ti-16Nb-(0-4)Sn alloys produced by Powder Injection Molding,” Vacuum, vol. 142, pp.164-174, 2017.
  • [23] G. Xie, H. Kanetaka, H. Kato, F. Qin, W. Wang, “Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility,” Intermetallics, vol. 105, pp.153–162, 2019.
  • [24] M.K. Ibrahim, E. Hamzah, S.N. Saud, “Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs,” Journal of Materials Engineering and Performance, vol. 28, pp.382–393, 2018.
  • [25] P. Li, X. Ma, D. Wang, H. Zhang, “Microstructural and Mechanical Properties of -Type Ti–Nb–Sn Biomedical Alloys with Low Elastic Modulus,” Metarials, vol. 9, pp.1-16. 2019.
  • [26] Ö. Çakmak, M. Kaya, “Efect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy,” Applied Physics A, vol. 127, pp.561-570, 2021.
  • [27] A. Nouri, P.D. Hodgson, C.E. Wen, “Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy,” Acta Biomaterials, vol. 6, pp.1630–1639, 2010.
  • [28] T. Kunii, Y. Mori, H. Tanaka, A. Kogure, M. Kamimura, N. Mori, S. Hanada, N. Masahashi, E. Itoi, “Improved osseointegration of a TiNbSn alloy with a low Young’s modulus treated with anodic oxidation,” Science Report, vol. 9, pp.1-10, 2019.
  • [29] H. Tanaka, Y. Mori, A. Noro, A. Kogure, M. Kamimura, N. Yamada, S. Hanada, N. Masahashi, E. Itoi, “Apatite formation and biocompatibility of a low Young's modulus Ti-Nb-Sn alloy treated with anodic oxidation and hot water. PLoS One, vol. 11(2), pp.1-14, 2016.
  • [30] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, “Mechanical properties and osteoconductivity of porous bioactive titanium,” Biomaterials, vol. 26, pp.6014–6023, 2005.
  • [31] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, “Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment,” Materials Science and Engineering C, vol. 59, pp.690–701, 2016.
  • [32] B.S. Van, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H.V. Oosterwyck, J.P. Kruth, J. Schrooten, “The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds,” Acta Biomaterials, vol. 8, pp.2824–2834, 2012.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ömer Çakmak 0000-0001-5983-6783

Mehmet Kaya 0000-0001-9710-2254

Ebru Annaç 0000-0001-9726-5846

Mustafa Köm 0000-0001-5026-9559

Proje Numarası MÜFLTP/2017-0001
Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 10 Temmuz 2021
Kabul Tarihi 22 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE Ö. Çakmak, M. Kaya, E. Annaç, ve M. Köm, “İmplantasyon Uygulamaları İçin Toz Metalurjisi ile Üretilen Ti-16Nb-4Sn Alaşımının Mikroyapı ve Biyouyumluluk Özelliklerinin İncelenmesi”, GMBD, c. 8, sy. 1, ss. 29–40, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg