Research Article
BibTex RIS Cite

Measuring the Effect of Data Augmentation Methods for Improving the Success of Convolutional Neural Network

Year 2022, Volume: 8 Issue: 3, 430 - 438, 31.12.2022

Abstract

With the intensive work done, deep learning finds many use areas. However, obtaining a sufficient amount of data required by deep learning is not always an easy task. To overcome this difficulty, deep network trainers prefer to develop their datasets by using a set of algorithms. With the increased amount of data, deep networks can be trained more successfully. Data augmentation (DA) is one of the most widely used methods of increasing the amount of data. With DA, the number of sounds and images that a convolutional neural network (CNN) can classify can be increased. In this study, the number of images belonging to 6 classes that do not have enough images to train the CNN successfully enough was increased by DA methods. First, the amount of data was increased by applying three different DA methods separately and all three together. The original dataset and created datasets in which DA methods were used are used to train 15 CNNs with different parameters. Then, their effects on CNN have been investigated. As a result, a success increase of over 5% was observed by increasing the data.

Supporting Institution

Selçuk University Coordinatorship of Faculty Member Traning Program

Project Number

2019 - ÖYP - 008

References

  • Reference1 Y. Q. Lv, K. Liu, F. Cheng, and W. Li, “Visual tracking with tree-structured appearance model for online learning,” Iet Image Processing, vol. 13, no. 12, pp. 2106–2115, 2019, doi: 10.1049/iet-ipr.2018.6517.
  • Reference2 F. Özyurt, T. Tuncer, E. Avci, M. Koç, and İ. Serhatlioğlu, “A novel liver image classification method using perceptual hash-based convolutional neural network,” Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3173–3182, 2019.
  • Reference3 L. Perez and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.
  • Reference4 Q. Lin et al., “Classifying functional nuclear images with convolutional neural networks: a survey,” IET Image Processing, vol. 14, no. 14, pp. 3300–3313, 2020.
  • Reference5 H. Alhichri, Y. Bazi, and N. Alajlan, “Assisting the Visually Impaired in Multi-object Scene Description Using OWA-Based Fusion of CNN Models,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 10511–10527, 2020.
  • Reference6 A. Khémiri, A. K. Echi, and M. Elloumi, “Bayesian versus convolutional networks for Arabic handwriting recognition,” Arabian Journal for Science and Engineering, vol. 44, no. 11, pp. 9301–9319, 2019.
  • Reference7 F. Zhou, Y. Hu, and X. Shen, “MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition,” The Visual Computer, vol. 35, no. 11, pp. 1583–1594, 2019.
  • Reference8 A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for image classification,” in 2016 IEEE international conference on image processing (ICIP), 2016, pp. 3688–3692.
  • Reference9 D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.
  • Reference10 C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.
  • Reference11 Y. LeCun et al., “Handwritten digit recognition with a back-propagation network,” Advances in neural information processing systems, vol. 2, 1989.
  • Reference12 C. Affonso, A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de Leon Ferreira, “Deep learning for biological image classification,” Expert Systems with Applications, vol. 85, pp. 114–122, 2017.
  • Reference13 A. Arora, P. Chakraborty, and M. P. S. Bhatia, “Analysis of Data from Wearable Sensors for Sleep Quality Estimation and Prediction Using Deep Learning,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 10793–10812, 2020.
  • Reference14 X. Jiang, S. C. Satapathy, L. Yang, S.-H. Wang, and Y.-D. Zhang, “A Survey on Artificial Intelligence in Chinese Sign Language Recognition,” Arabian Journal for Science and Engineering, pp. 1–36, 2020.

Evrişimsel Sinir Ağlarının Başarısının Artırılmasında Veri Arttırma Yöntemlerinin Etkisinin Ölçülmesi

Year 2022, Volume: 8 Issue: 3, 430 - 438, 31.12.2022

Abstract

Yapılan yoğun çalışmalarla derin öğrenme birçok kullanım alanı bulmaktadır. Ancak derin öğrenmenin gerektirdiği yeterli miktarda veriyi elde etmek her zaman kolay bir iş değildir. Bu zorluğun üstesinden gelmek için derin ağ eğiticileri, bir dizi algoritma kullanarak veri kümelerini geliştirmeyi tercih ederler. Artan veri miktarı ile derin ağlar daha başarılı bir şekilde eğitilebilir. Veri artırma (DA), veri miktarını artırmanın en yaygın kullanılan yöntemlerinden biridir. DA ile bir evrişimsel sinir ağının (CNN) sınıflandırabileceği ses ve görüntü sayısı artırılabilir. Bu çalışmada, CNN'yi yeterince başarılı bir şekilde eğitmek için yeterli görüntüye sahip olmayan 6 sınıfa ait görüntü sayısı DA yöntemleri ile artırılmıştır. İlk olarak, üç farklı DA yöntemi ayrı ayrı ve üçü birlikte uygulanarak veri miktarı artırılmıştır. DA yöntemlerinin kullanıldığı orijinal veri seti ve oluşturulan veri setleri, 15 CNN'yi farklı parametrelerle eğitmek için kullanılmıştır. Daha sonra CNN üzerindeki etkileri araştırılmıştır. Sonuç olarak veriler artırılarak %5'in üzerinde bir başarı artışı gözlemlenmiştir.

Project Number

2019 - ÖYP - 008

References

  • Reference1 Y. Q. Lv, K. Liu, F. Cheng, and W. Li, “Visual tracking with tree-structured appearance model for online learning,” Iet Image Processing, vol. 13, no. 12, pp. 2106–2115, 2019, doi: 10.1049/iet-ipr.2018.6517.
  • Reference2 F. Özyurt, T. Tuncer, E. Avci, M. Koç, and İ. Serhatlioğlu, “A novel liver image classification method using perceptual hash-based convolutional neural network,” Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 3173–3182, 2019.
  • Reference3 L. Perez and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.
  • Reference4 Q. Lin et al., “Classifying functional nuclear images with convolutional neural networks: a survey,” IET Image Processing, vol. 14, no. 14, pp. 3300–3313, 2020.
  • Reference5 H. Alhichri, Y. Bazi, and N. Alajlan, “Assisting the Visually Impaired in Multi-object Scene Description Using OWA-Based Fusion of CNN Models,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 10511–10527, 2020.
  • Reference6 A. Khémiri, A. K. Echi, and M. Elloumi, “Bayesian versus convolutional networks for Arabic handwriting recognition,” Arabian Journal for Science and Engineering, vol. 44, no. 11, pp. 9301–9319, 2019.
  • Reference7 F. Zhou, Y. Hu, and X. Shen, “MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition,” The Visual Computer, vol. 35, no. 11, pp. 1583–1594, 2019.
  • Reference8 A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for image classification,” in 2016 IEEE international conference on image processing (ICIP), 2016, pp. 3688–3692.
  • Reference9 D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.
  • Reference10 C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.
  • Reference11 Y. LeCun et al., “Handwritten digit recognition with a back-propagation network,” Advances in neural information processing systems, vol. 2, 1989.
  • Reference12 C. Affonso, A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de Leon Ferreira, “Deep learning for biological image classification,” Expert Systems with Applications, vol. 85, pp. 114–122, 2017.
  • Reference13 A. Arora, P. Chakraborty, and M. P. S. Bhatia, “Analysis of Data from Wearable Sensors for Sleep Quality Estimation and Prediction Using Deep Learning,” Arabian Journal for Science and Engineering, vol. 45, no. 12, pp. 10793–10812, 2020.
  • Reference14 X. Jiang, S. C. Satapathy, L. Yang, S.-H. Wang, and Y.-D. Zhang, “A Survey on Artificial Intelligence in Chinese Sign Language Recognition,” Arabian Journal for Science and Engineering, pp. 1–36, 2020.
There are 14 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Articles
Authors

Kürşad Uçar 0000-0001-5521-2447

H. Erdinç Kocer 0000-0002-0799-2140

Project Number 2019 - ÖYP - 008
Publication Date December 31, 2022
Submission Date June 7, 2022
Acceptance Date September 1, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

IEEE K. Uçar and H. E. Kocer, “Measuring the Effect of Data Augmentation Methods for Improving the Success of Convolutional Neural Network”, GJES, vol. 8, no. 3, pp. 430–438, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg