Gyroscopic Vibration Damper for Building: Theoretical and Experimental Research
Year 2022,
Volume: 8 Issue: 3, 457 - 471, 31.12.2022
Faruk Ünker
,
Olkan Çuvalcı
Abstract
In this study, a gyroscopic damper model consisting of a built-in column has been developed. The objective of this study is determining the required angular momentum with the optimum ratio of natural frequency for the gyroscopic vibration absorber under sinusoidal excitation. This damper model is investigated experimentally and theoretically for different angular momentums of the gyroscope and different frequency ratios of the structure and damper on a single-story structure. As a result of the study, the displacement of the structure at the 1st mode frequency for a given angular momentum of the gyroscope is fairly reduced. Besides, at a notable frequency ratio of the damper and the structure, the effect of the angular momentum is improved. Even if the disk mass of the gyroscope decreases, it is possible to obtain a certain angular momentum by increasing the disk speed. Thus, lighter and less bulky gyroscopic vibration dampers can be designed. The cooperation of the required angular momentum with the optimum ratio of natural frequencies should be considered to obtain a highest attenuation of the building vibration. In addition, the equations of motion obtained according to the 1st mode and the theoretical results overlapped.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TUBITAK).
Thanks
This research was funded under Grant no: 114M760 by the Scientific and Technological Research Council of Turkey (TUBITAK).
References
- F. Ünker, “Tuned gyro pendulum stabilizer for control of vibrations in structures.” International Journal of Acoustics and Vibration, vol. 25(3), pp. 355–362, 2020. https://doi.org/10.20855/ijav.2020.25.31632
- T. T. Soong, and G. F. Dargush, “Passive Energy Dissipation System in Structural Engineering,” Wiley, New York, NY, USA, 1997.
- T.T. Soong, and B.F. Jr. Spencer, “Supplemental energy dissipation: state-of-the-art and state-of-the practice,” Engineering Structures, vol. 24 (3), pp. 243-259, 2002. doi:10.1016/S0141-0296(01)00092-X
- M. P. Singh, E.E. Matheu and L.E. Suarez, “Active and Semi-Active Control of Structures under Seismic Excitation,” Earthquake Engineering and Structural Dynamics, vol. 26,2, pp. 193-213, 1997. https://doi.org/10.1002/(SICI)1096-9845(199702)26:2<193::AID-EQE634>3.0.CO;2-%23
- F. Ünker and O. Çuvalcı, “Seismic Motion Control of a Column Using a Gyroscope,” In Procedia - Social and Behavioral Sciences, vol. 195, pp. 2316-2325, 2015. doi: 10.1016/j.sbspro.2015.06.183
- O. Çuvalcı, F. Ünker, T. B. Baturalp, U. Gülbulak, and A. Ertaş, “Modal Control of Cantilever Beam Using a Gyrostabilizer,” Sound & Vibration, vol. 55(4), pp. 281—294, 2021. https://doi.org/10.32604/sv.2021.015705
- F. Ünker, and O. Çuvalcı, “Optimum Tuning of a Gyroscopic Vibration Absorber Using Coupled Gyroscopes for Vibration Control of a Vertical Cantilever Beam,” Shock and Vibration, vol. 2016, pp. 1-10, 2016. https://doi.org/10.1155/2016/1496727
- F. Ünker, “Vibration control in structures with gyroscope,” Ph.D. dissertation, Karadeniz Technical University, Trabzon, Türkiye, 2018.
- S.F. Ali and R. Padhi, “Active vibration suppression of non-linear beams using optimal dynamic inversion,” Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering vol. 223, pp. 657–672, 2009. https://doi.org/10.1243/09596518JSCE688
- 1A. Nayfeh and P. Pai, “Linear and Nonlinear Structural Mechanics,” New Jersey: Wiley Interscience, 2004.
- L. Zavodney and A. Nayfeh, “The nonlinear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment,” International Journal of Non-Linear Mechanics, vol. 24(2), pp. 105–125, 1989. https://doi.org/10.1016/0020-7462(89)90003-6
- E. Esmailzadeh and G. Nakhaie-Jazar, “Periodic behavior of a cantilever beam with end mass subjected to harmonic base excitation. International Journal of Non-Linear Mechanics, vol. 33(4), pp 567–577, 1998. https://doi.org/10.1016/S0020-7462(97)00038-3
Bina için Jiroskopik Titreşim Sönümleyici: Teorik ve Deneysel Araştırma
Year 2022,
Volume: 8 Issue: 3, 457 - 471, 31.12.2022
Faruk Ünker
,
Olkan Çuvalcı
Abstract
Bu araştırmada, kolon üzerine bağlanmış bir jiroskopik sönümleyici modeli üzerine çalışılmıştır. Bu çalışmanın amacı, sinüzoidal zorlayıcı yük altında jiroskopik titreşim sönümleyici için gerekli açısal momentum ile optimum doğal frekans oranı belirlenmesidir. Bu sönümleyici modeli, tek katlı bir yapı üzerinde jiroskopun farklı açısal momentumları ve yapı ile sönümleyicinin farklı frekans oranları için deneysel ve teorik olarak incelenmiştir. Çalışma sonucunda, jiroskopun belirli bir açısal momentumu için yapının 1. mod frekansında yer değiştirmesi oldukça azaltılmıştır. Ayrıca, sönümleyici ve yapının belli bir frekans oranında açısal momentumun etkisi iyileşmiştir. Jiroskopun disk kütlesi azalsa dahi disk hızını artırarak belirli bir açısal momentum elde etmek mümkündür. Böylece daha hafif ve daha az hacimli jiroskopik titreşim sönümleyici tasarlanabilir. Bina titreşiminde en yüksek sönümleme elde etmek için, gerekli açısal momentumun ile optimum doğal frekans oranı ile bağlantısı hesaba katılmalıdır. Ayrıca 1. moda göre elde edilen hareket denklemleri ile teorik sonuçlar örtüşmüştür.
References
- F. Ünker, “Tuned gyro pendulum stabilizer for control of vibrations in structures.” International Journal of Acoustics and Vibration, vol. 25(3), pp. 355–362, 2020. https://doi.org/10.20855/ijav.2020.25.31632
- T. T. Soong, and G. F. Dargush, “Passive Energy Dissipation System in Structural Engineering,” Wiley, New York, NY, USA, 1997.
- T.T. Soong, and B.F. Jr. Spencer, “Supplemental energy dissipation: state-of-the-art and state-of-the practice,” Engineering Structures, vol. 24 (3), pp. 243-259, 2002. doi:10.1016/S0141-0296(01)00092-X
- M. P. Singh, E.E. Matheu and L.E. Suarez, “Active and Semi-Active Control of Structures under Seismic Excitation,” Earthquake Engineering and Structural Dynamics, vol. 26,2, pp. 193-213, 1997. https://doi.org/10.1002/(SICI)1096-9845(199702)26:2<193::AID-EQE634>3.0.CO;2-%23
- F. Ünker and O. Çuvalcı, “Seismic Motion Control of a Column Using a Gyroscope,” In Procedia - Social and Behavioral Sciences, vol. 195, pp. 2316-2325, 2015. doi: 10.1016/j.sbspro.2015.06.183
- O. Çuvalcı, F. Ünker, T. B. Baturalp, U. Gülbulak, and A. Ertaş, “Modal Control of Cantilever Beam Using a Gyrostabilizer,” Sound & Vibration, vol. 55(4), pp. 281—294, 2021. https://doi.org/10.32604/sv.2021.015705
- F. Ünker, and O. Çuvalcı, “Optimum Tuning of a Gyroscopic Vibration Absorber Using Coupled Gyroscopes for Vibration Control of a Vertical Cantilever Beam,” Shock and Vibration, vol. 2016, pp. 1-10, 2016. https://doi.org/10.1155/2016/1496727
- F. Ünker, “Vibration control in structures with gyroscope,” Ph.D. dissertation, Karadeniz Technical University, Trabzon, Türkiye, 2018.
- S.F. Ali and R. Padhi, “Active vibration suppression of non-linear beams using optimal dynamic inversion,” Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering vol. 223, pp. 657–672, 2009. https://doi.org/10.1243/09596518JSCE688
- 1A. Nayfeh and P. Pai, “Linear and Nonlinear Structural Mechanics,” New Jersey: Wiley Interscience, 2004.
- L. Zavodney and A. Nayfeh, “The nonlinear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment,” International Journal of Non-Linear Mechanics, vol. 24(2), pp. 105–125, 1989. https://doi.org/10.1016/0020-7462(89)90003-6
- E. Esmailzadeh and G. Nakhaie-Jazar, “Periodic behavior of a cantilever beam with end mass subjected to harmonic base excitation. International Journal of Non-Linear Mechanics, vol. 33(4), pp 567–577, 1998. https://doi.org/10.1016/S0020-7462(97)00038-3